Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 146(16): 11141-11151, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38600025

ABSTRACT

The formation of dimer-Cu species, which serve as the active sites of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies on the mobility of CuI species in the channels of the Cu-SSZ-13 catalysts. Herein, the key role of framework Brønsted acid sites in the mobility of reactive Cu ions was elucidated via a combination of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance ultraviolet-visible spectroscopy. When the number of framework Al sites decreases, the Brønsted acid sites decrease, leading to a systematic increase in the diffusion barrier for [Cu(NH3)2]+ and less formation of highly reactive dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of Al sites is uneven, the [Cu(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage (e.g., cage with paired Al sites), which effectively accelerates the formation of dimer-Cu species and hence promotes the SCR reaction. These findings unveil the mechanism by which framework Brønsted acid sites influence the intercage diffusion and reactivity of [Cu(NH3)2]+ complexes in Cu-SSZ-13 catalysts and provide new insights for the development of zeolite-based catalysts with excellent SCR activity by regulating the microscopic spatial distribution of framework Brønsted acid sites.

2.
Soft Matter ; 20(2): 330-337, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38087892

ABSTRACT

DNA functionalized pNipmam microgels, which have recently been introduced, are examined at different concentrations of sodium chloride and in PBS solutions via temperature dependent 1H-NMR measurements and are compared to pure pNipmam microgels. We show that the DNA modification shifts the volume phase transition temperature towards lower temperatures and the addition of salt and PBS further supports this effect in both materials. Thermodynamic values, i.e. enthalpy, entropy and Gibbs free energy, are determined via a non-linear fit which can be applied directly to the measurement data without further linearization.


Subject(s)
Microgels , Proton Magnetic Resonance Spectroscopy , Temperature , Thermodynamics , DNA , Sodium Chloride/chemistry
3.
Environ Sci Technol ; 57(33): 12465-12475, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37556316

ABSTRACT

The low-temperature mechanism of chabazite-type small-pore Cu-SSZ-13 zeolite, a state-of-the-art catalyst for ammonia-assisted selective reduction (NH3-SCR) of toxic NOx pollutants from heavy-duty vehicles, remains a debate and needs to be clarified for further improvement of NH3-SCR performance. In this study, we established experimental protocols to follow the dynamic redox cycling (i.e., CuII ↔ CuI) of Cu sites in Cu-SSZ-13 during low-temperature NH3-SCR catalysis by in situ ultraviolet-visible spectroscopy and in situ infrared spectroscopy. Further integrating the in situ spectroscopic observations with time-dependent density functional theory calculations allows us to identify two cage-confined transient states, namely, the O2-bridged Cu dimers (i.e., µ-η2:η2-peroxodiamino dicopper) and the proximately paired, chemically nonbonded CuI(NH3)2 sites, and to confirm the CuI(NH3)2 pair as a precursor to the O2-bridged Cu dimer. Comparative transient experiments reveal a particularly high reactivity of the CuI(NH3)2 pairs for NO-to-N2 reduction at low temperatures. Our study demonstrates direct experimental evidence for the transient formation and high reactivity of proximately paired CuI sites under zeolite confinement and provides new insights into the monomeric-to-dimeric Cu transformation for completing the Cu redox cycle in low-temperature NH3-SCR catalysis over Cu-SSZ-13.


Subject(s)
Zeolites , Density Functional Theory , Zeolites/chemistry , Oxidation-Reduction , Spectrophotometry, Infrared , Catalysis , Ammonia/chemistry
4.
Environ Sci Technol ; 57(42): 16121-16130, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37842921

ABSTRACT

Ammonia-mediated selective catalytic reduction (NH3-SCR) is currently the key approach to abate nitrogen oxides (NOx) emitted from heavy-duty lean-burn vehicles. The state-of-art NH3-SCR catalysts, namely, copper ion-exchanged chabazite (Cu-CHA) zeolites, perform rather poorly at low temperatures (below 200 °C) and are thus incapable of eliminating effectively NOx emissions under cold-start conditions. Here, we demonstrate a significant promotion of low-temperature NOx reduction by reinforcing the dynamic motion of zeolite-confined Cu sites during NH3-SCR. Combining complex impedance-based in situ spectroscopy (IS) and extended density-functional tight-binding molecular dynamics simulation, we revealed an environment- and temperature-dependent nature of the dynamic Cu motion within the zeolite lattice. Further coupling in situ IS with infrared spectroscopy allows us to unravel the critical role of monovalent Cu in the overall Cu mobility at a molecular level. Based on these mechanistic understandings, we elicit a boost of NOx reduction below 200 °C by reinforcing the dynamic Cu motion in various Cu-zeolites (Cu-CHA, Cu-ZSM-5, Cu-Beta, etc.) via facile postsynthesis treatments, either in a reductive mixture at low temperatures (below 250 °C) or in a nonoxidative atmosphere at high temperatures (above 450 °C).


Subject(s)
Zeolites , Zeolites/chemistry , Copper , Ammonia/chemistry , Nitrogen Oxides/chemistry , Temperature , Catalysis
5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835401

ABSTRACT

Melphalan (Mel) is an antineoplastic widely used in cancer and other diseases. Its low solubility, rapid hydrolysis, and non-specificity limit its therapeutic performance. To overcome these disadvantages, Mel was included in ß-cyclodextrin (ßCD), which is a macromolecule that increases its aqueous solubility and stability, among other properties. Additionally, the ßCD-Mel complex has been used as a substrate to deposit silver nanoparticles (AgNPs) through magnetron sputtering, forming the ßCD-Mel-AgNPs crystalline system. Different techniques showed that the complex (stoichiometric ratio 1:1) has a loading capacity of 27%, an association constant of 625 M-1, and a degree of solubilization of 0.034. Added to this, Mel is partially included, exposing the NH2 and COOH groups that stabilize AgNPs in the solid state, with an average size of 15 ± 3 nm. Its dissolution results in a colloidal solution of AgNPs covered by multiple layers of the ßCD-Mel complex, with a hydrodynamic diameter of 116 nm, a PDI of 0.4, and a surface charge of 19 mV. The in vitro permeability assays show that the effective permeability of Mel increased using ßCD and AgNPs. This novel nanosystem based on ßCD and AgNPs is a promising candidate as a Mel nanocarrier for cancer therapy.


Subject(s)
Metal Nanoparticles , beta-Cyclodextrins , Melphalan , Silver , beta-Cyclodextrins/chemistry , Solubility
6.
J Biomech Eng ; 144(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34386814

ABSTRACT

Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity.


Subject(s)
Hand , Models, Biological , Biomechanical Phenomena , Electromyography , Hand/physiology , Humans , Muscle, Skeletal/physiology , Upper Extremity
7.
Environ Sci Technol ; 55(18): 12619-12629, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34510889

ABSTRACT

Phosphorus (P) stemming from biodiesel and/or lubricant oil additives is unavoidable in real diesel exhausts and deactivates gradually the Cu-SSZ-13 zeolite catalyst for ammonia-assisted selective catalytic NOx reduction (NH3-SCR). Here, the deactivation mechanism of Cu-SSZ-13 by P-poisoning was investigated by ex situ examination of the structural changes and by in situ probing the dynamics and redox of Cu active sites via a combination of impedance spectroscopy, diffuse reflection infrared Fourier transform spectroscopy, and ultraviolet-visible spectroscopy. We unveiled that strong interactions between Cu and P led to not only a loss of Cu active sites for catalytic turnovers but also a restricted dynamic motion of Cu species during low-temperature NH3-SCR catalysis. Furthermore, the CuII ↔ CuI redox cycling of Cu sites, especially the CuI → CuII reoxidation half-cycle, was significantly inhibited, which can be attributed to the restricted Cu motion by P-poisoning disabling the formation of key dimeric Cu intermediates. As a result, the NH3-SCR activity at low temperatures (200 °C and below) decreased slightly for the mildly poisoned Cu-SSZ-13 and considerably for the severely poisoned Cu-SSZ-13.


Subject(s)
Ammonia , Copper , Catalysis , Catalytic Domain , Oxidation-Reduction , Phosphorus
8.
Phys Chem Chem Phys ; 23(8): 4927-4934, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33620358

ABSTRACT

Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.

9.
Sensors (Basel) ; 21(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567769

ABSTRACT

The AnyBody Modeling System™ (AMS) is a musculoskeletal software simulation solution using inverse dynamics analysis. It enables the determination of muscle and joint forces for a given bodily motion. The recording of the individual movement and the transfer into the AMS is a complex and protracted process. Researches indicated that the contactless, visual Leap Motion Controller (LMC) provides clinically meaningful motion data for hand tracking. Therefore, the aim of this study was to integrate the LMC hand motion data into the AMS in order to improve the process of recording a hand movement. A Python-based interface between the LMC and the AMS, termed ROSE Motion, was developed. This solution records and saves the data of the movement as Biovision Hierarchy (BVH) data and AnyScript vector files that are imported into the AMS simulation. Setting simulation parameters, initiating the calculation automatically, and fetching results is implemented by using the AnyPyTools library from AnyBody. The proposed tool offers a rapid and easy-to-use recording solution for elbow, hand, and finger movements. Features include animation, cutting/editing, exporting the motion, and remote controlling the AMS for the analysis and presentation of musculoskeletal simulation results. Comparing the motion tracking results with previous studies, covering problems when using the LMC limit the correctness of the motion data. However, fast experimental setup and intuitive and rapid motion data editing strengthen the use of marker less systems as the herein presented compared to marker based motion capturing.


Subject(s)
Hand , Movement , Fingers , Humans , Motion , Software
10.
Nano Lett ; 19(12): 8862-8867, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31642321

ABSTRACT

Solid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach. We investigated thermoresponsive poly(N-isopropylmethacrylamide) microgels (µGs) at different surfaces in an aqueous environment. As super-resolution fluorescence imaging method, three-dimensional direct stochastical optical reconstruction microscopy (dSTORM) allowed for visualizing µGs in their three-dimensional (3D) shape, for example, in a "fried-egg" conformation depending on the hydrophilicity of the surface (strength of adsorption). The 3D shape, as defined by point clouds obtained from single-molecule localizations, was analyzed. A new fitting algorithm yielded an isosurface of constant density which defines the deformation of µGs at the different surfaces. The presented methodology quantifies deformation of objects with fuzzy surfaces and allows for comparison of their structures, whereby it is completely independent from the data acquisition method. Finally, the experimental data are complemented with mesoscopic computer simulations in order to (i) rationalize the experimental results and (ii) to track the evolution of the shape with changing surface hydrophilicity; a good correlation of the shapes obtained experimentally and with computer simulations was found.

11.
Langmuir ; 35(32): 10424-10434, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31306025

ABSTRACT

The development of new contrast agents (CAs) for magnetic resonance imaging (MRI) is of high interest, especially because of the increased concerns of patient safety and quick clearance of clinically used gadolinium and iron oxide-based CAs, respectively. Here, a two-step synthesis of superparamagnetic water-soluble iron platinum (FePt) nanoparticles (NPs) with core sizes between 2 and 8 nm for use as CAs in MRI is reported. First, wet-chemical organometallic NPs are synthesized by thermal decomposition in the presence of stabilizing oleic acid and oleylamine. Second, the hydrophobic NPs are coated with an amphiphilic polymer and transferred into aqueous media. Their magnetization values and relaxation rates exceed those published for CAs already used for clinical application. Their saturation magnetization increases with the core size to approximately 82 A·m2/kgFe. For 8 nm NPs, the T2 relaxivity of approximately 221 (mM·s)-1 is 5 times larger than that for the ferumoxides, and for 6 nm NPs, the T1 relaxivity of approximately 12 (mM·s)-1 is slightly higher than that of ultrasmall gadolinium oxide NPs. The 6 nm FePt NPs are identified as excellent CAs for both T1 and T2 imaging. Most importantly, because of their coating, significantly low cytotoxicity is achieved. FePt NPs prove to be a promising alternative to gadolinium and iron oxide NPs showing high-quality CA characteristics for both T1- and T2-weighted images.

14.
Anal Chem ; 89(11): 6091-6098, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28467056

ABSTRACT

A versatile guest matrix was fabricated from a temperature- and pH-sensitive poly(N-isopropylacrylamide)-co-(3-(N,N-dimethylamino)propylmethacrylamide) microgel (poly(NIPAM-co-DMAPMA), MG) for the gentle incorporation of butyrylcholinesterase (BChE). The microgel/BChE films were built up on a surface of graphite-based screen-printed electrodes (SPEs) premodified with MnO2 nanoparticles via a two-step sequential adsorption under careful temperature and pH control. On this basis, a rather simple amperometric biosensor construct was formed, which uses butyrylthiocholine as BChE substrate with subsequent MnO2-mediated thiocholine oxidation at a graphite-based SPE. The complexation of BChE with the microgel was found to be safe and effective, as confirmed by a high operational and rather good long-term storage stability of the resultant SPE-MnO2/MG/BChE biosensors. The small mesh size of the microgel with respect to the size of BChE results in a predominant outer complexation of BChE within the dangling chains of the microgel rather than a deep penetration of the enzyme into the microgels. Given such surface localization, BChE is easily accessible both for the substrate and for cholinesterase inhibitors. This was supported by the analytical characteristics of the SPE-MnO2/MG/BChE biosensor that were examined and optimized both for the substrate and for the enzyme detection. The SPE-MnO2/MG/BChE biosensor enabled precision detection of organophosphorus pesticides (diazinon(oxon), chlorpyrifos(oxon)) in aqueous samples with minimized interference from extraneous (nonanalyte) substances (e.g., ions of heavy metals). The detection limits for diazinon(oxon) and chlorpyrifos(oxon) were estimated to be as low as 6 × 10-12 M and 8 × 10-12 M, respectively, after 20 min of preincubation with these irreversible inhibitors of BChE.

15.
Arch Toxicol ; 91(9): 3011-3037, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28702691

ABSTRACT

Gold nanoparticles (AuNPs) have been extensively explored in biomedical applications, for example as drug carriers, contrast agents, or therapeutics. However, AuNP can exhibit cytotoxic profile, when the size is below 2 nm (ultrasmall AuNP; usAuNP) and when the stabilizing ligands allow for access to the gold surface either for the direct interaction with biomolecules or for catalytic activity of the unshielded gold surface. Furthermore, usAuNP exhibits significantly different biodistribution and enhanced circulation times compared to larger AuNP. This review gives an overview about the synthesis and the physico-chemical properties of usAuNP and, thereby, focusses on 1.4 nm sized AuNP, which are derived from the compound Au55(PPh3)12Cl6 and which are the most intensively studied usAuNP in the field. This part is followed by a summary of the toxic properties of usAuNP, which include in vitro cytotoxicity tests on different cell lines, electrophysiological tests following FDA guidelines as well as studies on antibacterial effects. Finally, the biodistribution and pharmacokinetics of ultrasmall AuNP are discussed and compared to the properties of more biocompatible, larger AuNP.


Subject(s)
Gold/pharmacokinetics , Gold/toxicity , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Embryo, Nonmammalian , Humans , Particle Size , Tissue Distribution , Toxicity Tests/methods , Zebrafish/embryology
16.
Nanomedicine ; 13(5): 1645-1652, 2017 07.
Article in English | MEDLINE | ID: mdl-28285163

ABSTRACT

We studied the effect of gold nanoparticle (AuNP) size, surface charge, concentration and morphology on the integrity of the blood-brain barrier (BBB) in a well-established in vitro model set-up. We focused on the effect of peptide functionalized hollow gold nanospheres and gold nanorods, which selectively bind to amyloidogenic ß-amyloid structures. These AuNP conjugates have already been successfully tested as photothermal absorbers for potential application in Alzheimer's disease (AD) therapy in an in vitro set-up, but may exhibit a low passage through the BBB due to their overall negative charge. Our results show that: (i) small (1.4 nm) AuNPs strongly affects the BBB integrity, (ii) negative surface charge impedes BBB passage, and (iii) this charge effect caused by the peptide is compensated by covalent coupling to a polyethylene glycol ligand stabilizing the particles in diluted manner.


Subject(s)
Alzheimer Disease/drug therapy , Blood-Brain Barrier , Metal Nanoparticles , Amyloid beta-Peptides , Biological Transport , Gold , Humans , Peptides , Protein Binding
17.
Sensors (Basel) ; 17(12)2017 Dec 17.
Article in English | MEDLINE | ID: mdl-29258213

ABSTRACT

Surface acoustic wave (SAW) devices are well known for mass-sensitive sensor applications. In biosensing applications, chemical and biochemically evoked binding processes on surfaces are detected in liquid environments using delay line or resonator sensor configurations, preferably in combination with the appropriate microfluidic devices. All configurations share the common feature of analyzing the transmission characteristic of the propagating SAW. In this paper, a novel SAW-based impedance sensor type is introduced which uses only one interdigital transducer (IDT), simultaneously as the SAW generator and the sensor element. Here, the input port reflection coefficient S11 is measured at the IDT instead of the commonly used S21 transmission forward gain parameter. Thus, a sharp and distinct peak of the S11 spectrum is obtained, enabling a comfortable direct readout of the sensor signal. Proof of the concept was gained by analyzing the specific binding of the 4-mercaptophenylacetic acid gold nanoparticles (MPA-AuNP) directly to the IDT surface. The corresponding binding kinetic of the MPA-AuNP on the functionalized gold surface has been analyzed and a sensitivity of 7.4 mΩ nM-1 has been determined.

18.
Nano Lett ; 16(11): 7295-7301, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27701865

ABSTRACT

Compartmentalization in soft matter is important for segregating and coordinating chemical reactions, sequestering (re)active components, and integrating multifunctionality. Advances depend crucially on quantitative 3D visualization in situ with high spatiotemporal resolution. Here, we show the direct visualization of different compartments within adaptive microgels using a combination of in situ electron and super-resolved fluorescence microscopy. We unravel new levels of structural details and address the challenge of reconstructing 3D information from 2D projections for nonuniform soft matter as opposed to monodisperse proteins. Moreover, we visualize the thermally induced shrinkage of responsive core-shell microgels live in water. This strategy opens doors for systematic in situ studies of soft matter systems and their application as smart materials.

19.
Langmuir ; 32(4): 954-62, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26726770

ABSTRACT

Here, we report an approach to use infrared reflection absorption spectroscopy (IRRAS) for the unambiguous proof of the presence as well as the spatial distribution of organic ligands on the Janus gold nanoparticle (AuNP) surface. For this purpose we synthesized amphiphilic and zwitterionic Janus AuNPs and immobilized these on pretreated gold surfaces by directed self-assembly, exploiting hydrophilic/hydrophobic or electrostatic interactions, respectively. Thus, we obtained macroscopic two-dimensional arrays of Janus AuNPs exhibiting a specific orientation. These arrays were investigated by IRRAS, and the obtained spectra revealed only peaks of the ligands facing the IR beam, while the ligands facing the gold substrate were not detected due to reflection of the IR beam on the AuNP cores. Thus, we describe a straightforward spectroscopic procedure to prove the Janus character of zwitterionic and amphiphilic AuNPs in the size range of 10-15 nm.

20.
Pharm Res ; 33(6): 1337-50, 2016 06.
Article in English | MEDLINE | ID: mdl-26887679

ABSTRACT

PURPOSE: Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. METHODS: Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. RESULTS: For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 µm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. CONCLUSIONS: The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.


Subject(s)
Biopharmaceutics/methods , Computer Simulation , Models, Anatomic , Models, Biological , Nasal Absorption , Nasal Cavity/metabolism , Olfactory Bulb/metabolism , Pharmaceutical Preparations/administration & dosage , Technology, Pharmaceutical/methods , Administration, Intranasal , Aerosols , Female , Humans , Kinetics , Male , Nasal Cavity/anatomy & histology , Nasal Cavity/diagnostic imaging , Numerical Analysis, Computer-Assisted , Particle Size , Permeability , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Rheology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL