Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Publication year range
1.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37003256

ABSTRACT

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Subject(s)
Microbiota , Respiratory Tract Infections , Animals , Female , Mice , Pregnancy , Dendritic Cells , Diet , Propionates
2.
J Virol ; 98(3): e0015324, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421168

ABSTRACT

Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE: Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.


Subject(s)
Biomolecular Condensates , Respiratory Syncytial Virus, Human , Humans , Animals , Cattle , Cell Line , In Situ Hybridization, Fluorescence , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Ribosomes/metabolism , Virus Replication
3.
J Virol ; 97(7): e0060023, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37338342

ABSTRACT

Experimental simian immunodeficiency virus (SIV) infection of Asian macaques is an excellent model for HIV disease progression and therapeutic development. Recent coformulations of nucleoside analogs and an integrase inhibitor have been used for parenteral antiretroviral (ARV) administration in SIV-infected macaques, successfully resulting in undetectable plasma SIV RNA. In a cohort of SIVmac239-infected macaques, we recently observed that administration of coformulated ARVs resulted in an unexpected increase in plasma levels of soluble CD14 (sCD14), associated with stimulation of myeloid cells. We hypothesized that the coformulation solubilizing agent Kleptose (2-hydroxypropyl-ß-cyclodextrin [HPßCD]) may induce inflammation with myeloid cell activation and the release of sCD14. Herein, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy macaques with HPßCD from different commercial sources and evaluated inflammatory cytokine production in vitro. Treatment of PBMCs resulted in increased sCD14 release and myeloid cell interleukin-1ß (IL-1ß) production-with stimulation varying significantly by HPßCD source-and destabilized lymphocyte CCR5 surface expression. We further treated healthy macaques with Kleptose alone. In vivo, we observed modestly increased myeloid cell activation in response to Kleptose treatment without significant perturbation of the immunological transcriptome or epigenome. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPßCD in pharmaceutical coformulations. IMPORTANCE SIV infection of nonhuman primates is the principal model system for assessing HIV disease progression and therapeutic development. HPßCD has recently been incorporated as a solubilizing agent in coformulations of ARVs in SIV-infected nonhuman primates. Although HPßCD has historically been considered inert, recent findings suggest that HPßCD may contribute to inflammation. Herein, we investigate the contribution of HPßCD to healthy macaque inflammation in vitro and in vivo. We observe that HPßCD causes an induction of sCD14 and IL-1ß from myeloid cells in vitro and demonstrate that HPßCD stimulatory capacity varies by commercial source. In vivo, we observe modest myeloid cell activation in blood and bronchoalveolar lavage specimens absent systemic immune activation. From our findings, it is unclear whether HPßCD stimulation may improve or diminish immune reconstitution in ARV-treated lentiviral infections. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPßCD in pharmaceutical coformulations.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Disease Progression , Inflammation , Leukocytes, Mononuclear , Lipopolysaccharide Receptors , Macaca mulatta , Viral Load
4.
PLoS Pathog ; 18(7): e1010611, 2022 07.
Article in English | MEDLINE | ID: mdl-35797339

ABSTRACT

Antigen-specific CD8+ T cells play a key role in the host's antiviral response. T cells recognize viral epitopes via the T cell receptor (TCR), which contains the complementarity-determining region-3 (CDR3), comprising the variable, diversity and joining regions of the TCRß gene. During chronic simian immunodeficiency virus (SIV) infection of Asian macaque nonhuman primates, tissue-specific clonotypes are identifiable among SIV-specific CD8+ T cells. Here, we sought to determine level of antigen exposure responsible for the tissue-specific clonotypic structure. We examined whether the priming event and/or chronic antigen exposure is response for tissue-specific TCR repertoires. We evaluated the TCR repertoire of SIV-specific CD8+ T cells after acute antigen exposure following inoculation with a SIV DNA vaccine, longitudinally during the acute and chronic phases of SIV, and after administration of antiretrovirals (ARVs). Finally, we assessed the TCR repertoire of cytomegalovirus (CMV)-specific CD8+ T cells to establish if TCR tissue-specificity is shared among viruses that chronically replicate. TCR sequences unique to anatomical sites were identified after acute antigen exposure via vaccination and upon acute SIV infection. Tissue-specific clones also persisted into chronic infection and the clonotypic structure continued to evolve after ARV administration. Finally, tissue-specific clones were also observed in CMV-specific CD8+ T cells. Together, these data suggest that acute antigen priming is sufficient to induce tissue-specific clones and that this clonal hierarchy can persist when antigen loads are naturally or therapeutically reduced, providing mechanistic insight into tissue-residency.


Subject(s)
Cytomegalovirus Infections , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes , Epitopes , Primates , Receptors, Antigen, T-Cell
5.
Thorax ; 78(7): 661-673, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36344253

ABSTRACT

BACKGROUND: Severe neutrophilic asthma is resistant to treatment with glucocorticoids. The immunomodulatory protein macrophage migration inhibitory factor (MIF) promotes neutrophil recruitment to the lung and antagonises responses to glucocorticoids. We hypothesised that MIF promotes glucocorticoid resistance of neutrophilic inflammation in severe asthma. METHODS: We examined whether sputum MIF protein correlated with clinical and molecular characteristics of severe neutrophilic asthma in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. We also investigated whether MIF regulates neutrophilic inflammation and glucocorticoid responsiveness in a murine model of severe asthma in vivo. RESULTS: MIF protein levels positively correlated with the number of exacerbations in the previous year, sputum neutrophils and oral corticosteroid use across all U-BIOPRED subjects. Further analysis of MIF protein expression according to U-BIOPRED-defined transcriptomic-associated clusters (TACs) revealed increased MIF protein and a corresponding decrease in annexin-A1 protein in TAC2, which is most closely associated with airway neutrophilia and NLRP3 inflammasome activation. In a murine model of severe asthma, treatment with the MIF antagonist ISO-1 significantly inhibited neutrophilic inflammation and increased glucocorticoid responsiveness. Coimmunoprecipitation studies using lung tissue lysates demonstrated that MIF directly interacts with and cleaves annexin-A1, potentially reducing its biological activity. CONCLUSION: Our data suggest that MIF promotes glucocorticoid-resistance of neutrophilic inflammation by reducing the biological activity of annexin-A1, a potent glucocorticoid-regulated protein that inhibits neutrophil accumulation at sites of inflammation. This represents a previously unrecognised role for MIF in the regulation of inflammation and points to MIF as a potential therapeutic target for the management of severe neutrophilic asthma.


Subject(s)
Asthma , Macrophage Migration-Inhibitory Factors , Humans , Animals , Mice , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/therapeutic use , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Disease Models, Animal , Asthma/drug therapy , Asthma/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Annexins/metabolism , Annexins/therapeutic use
6.
J Virol ; 96(6): e0202421, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35138130

ABSTRACT

To gain more information about the nature of Birnaviridae virus factories (VFs), we used a recombinant infectious bursal disease virus (IBDV) expressing split-GFP11 tagged to the polymerase (VP1) that we have previously shown is a marker for VFs in infected cells expressing GFP1-10. We found that VFs colocalized with 5-ethynyl uridine in the presence of actinomycin, demonstrating they contained newly synthesized viral RNA, and VFs were visible in infected cells that were fixed and permeabilized with digitonin, demonstrating that they were not membrane bound. Fluorescence recovery after photobleaching (FRAP) a region of interest within the VFs occurred rapidly, recovering from approximately 25% to 87% the original intensity over 146 s, and VFs were dissolved by 1,6-hexanediol treatment, demonstrating they showed properties consistent with liquid-liquid phase separation. There was a lower colocalization of the VF GFP signal with the capsid protein VP2 (Manders' coefficient [MC] 0.6), compared to VP3 (MC, 0.9), which prompted us to investigate the VF ultrastructure by transmission electron microscopy (TEM). In infected cells, paracrystalline arrays (PAs) of virions were observed in the cytoplasm, as well as discrete electron dense regions. Using correlative light and electron microscopy (CLEM), we observed that the electron dense regions correlated with the GFP signal of the VFs, which were distinct from the PAs. In summary, Birnaviridae VFs contain newly synthesized viral RNA, are not bound by a membrane, show properties consistent with liquid-liquid phase separation, and are distinct from the PAs observed by TEM. IMPORTANCE Members of the Birnaviridae infect birds, fish and insects, and are responsible for diseases of significant economic importance to the poultry industry and aquaculture. Despite their importance, how they replicate in cells remains poorly understood. Here, we show that the Birnaviridae virus factories are not membrane bound, demonstrate properties consistent with liquid-liquid phase separation, and are distinct from the paracrystalline arrays of virions observed by transmission electron microscopy, enhancing our fundamental knowledge of virus replication that could be used to develop strategies to control disease, or optimize their therapeutic application.


Subject(s)
Birnaviridae Infections , Birnaviridae , Infectious bursal disease virus , Poultry Diseases , Viral Replication Compartments , Virus Replication , Animals , Birnaviridae/physiology , Cell Line , Chickens/genetics , Infectious bursal disease virus/physiology , Microscopy, Electron , RNA, Viral/genetics , Viral Structural Proteins/metabolism , Virion/metabolism
7.
Am J Respir Crit Care Med ; 205(3): 300-312, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34860143

ABSTRACT

Rationale: The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type 2 inflammation and asthma pathogenesis. Objectives: To determine whether P2Y13-R (P2Y13 receptor), a purinergic GPCR (G protein-coupled receptor) and risk allele for asthma, regulates the release of IL-33 and HMGB1. Methods: Bronchial biopsy specimens were obtained from healthy subjects and subjects with asthma. Primary human airway epithelial cells (AECs), primary mouse AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins was measured by using immunohistochemistry and an ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and exacerbation of experimental asthma was assessed by using pharmacological antagonists and mice with P2Y13-R gene deletion. Measurements and Main Results: Aeroallergen exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, and aeroallergen (house dust mite, cockroach, or Alternaria antigen) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset and, critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. Conclusions: We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1 and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.


Subject(s)
Asthma/immunology , HMGB1 Protein/metabolism , Interleukin-33/metabolism , Receptors, Purinergic P2/metabolism , Animals , Asthma/metabolism , Asthma/physiopathology , Biomarkers/metabolism , Case-Control Studies , Disease Progression , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL
8.
Australas Psychiatry ; 31(3): 277-281, 2023 06.
Article in English | MEDLINE | ID: mdl-36913715

ABSTRACT

OBJECTIVE: To investigate the clinical characteristics of tertiary students and non-students attending a specialist clinic for severe mood disorders. METHOD: Medical record audit of clients discharged from the Youth Mood Clinic (YMC). Data extracted included depressive symptomatology, suicidal ideation, self-harm, suicide attempt, tertiary education engagement, drop-out and deferral. RESULTS: Data from 131 clients (M age = 19.58 years, SD = 2.66) were analysed, including 46 tertiary students. Relative to non-students, at intake, tertiary students reported more severe depressive symptomatology (d = 0.43). They were more likely to experience suicidal ideation at intake (V = 0.23), and during treatment (V = 0.18). Tertiary students were also more likely to be living separately to their family of origin (V = 0.20) but were less likely to have experienced parental separation (V = 0.19). 21.73% of tertiary students dropped out or deferred study during care. CONCLUSION: In this cohort, those engaged in tertiary education experience more severe depression and more commonly experienced suicidal ideation. These young people require targeted support for their mental health while they undertake tertiary education.


Subject(s)
Depressive Disorder , Mood Disorders , Adolescent , Humans , Young Adult , Adult , Mood Disorders/epidemiology , Mood Disorders/therapy , Suicide, Attempted/psychology , Suicidal Ideation , Students/psychology , Depressive Disorder/psychology , Risk Factors , Depression/epidemiology , Depression/psychology
9.
PLoS Pathog ; 16(7): e1008651, 2020 07.
Article in English | MEDLINE | ID: mdl-32658914

ABSTRACT

Type-2 immunity elicits tissue repair and homeostasis, however dysregulated type-2 responses cause aberrant tissue remodelling, as observed in asthma. Severe respiratory viral infections in infancy predispose to later asthma, however, the processes that mediate tissue damage-induced type-2 inflammation and the origins of airway remodelling remain ill-defined. Here, using a preclinical mouse model of viral bronchiolitis, we find that increased epithelial and mesenchymal high-mobility group box 1 (HMGB1) expression is associated with increased numbers of IL-13-producing type-2 innate lymphoid cell (ILC2s) and the expansion of the airway smooth muscle (ASM) layer. Anti-HMGB1 ablated lung ILC2 numbers and ASM growth in vivo, and inhibited ILC2-mediated ASM cell proliferation in a co-culture model. Furthermore, we identified that HMGB1/RAGE (receptor for advanced glycation endproducts) signalling mediates an ILC2-intrinsic IL-13 auto-amplification loop. In summary, therapeutic targeting of the HMGB1/RAGE signalling axis may act as a novel asthma preventative by dampening ILC2-mediated type-2 inflammation and associated ASM remodelling.


Subject(s)
Airway Remodeling/immunology , HMGB1 Protein/immunology , Inflammation/immunology , Lymphocytes/immunology , Muscle, Smooth/immunology , Animals , Mice , Muscle, Smooth/pathology , Receptor for Advanced Glycation End Products/immunology
10.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32878896

ABSTRACT

Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.


Subject(s)
Immunity, Innate/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Signal Transduction/physiology , Transcription Factor RelA/metabolism , Animals , Antiviral Agents/pharmacology , Cattle , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Inclusion Bodies, Viral/metabolism , NF-kappa B/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/genetics , Tumor Necrosis Factor-alpha , Vero Cells , Virus Replication
11.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32321810

ABSTRACT

The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 µm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 µm/s at 16 hpi compared to 0.22 µm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.


Subject(s)
Infectious bursal disease virus/genetics , Reassortant Viruses/genetics , Virus Replication/genetics , Animals , Cell Line , Coinfection/metabolism , Cytoplasm , RNA Viruses/genetics , Reassortant Viruses/metabolism , Viral Structural Proteins/genetics
12.
Am J Respir Crit Care Med ; 201(11): 1358-1371, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32105156

ABSTRACT

Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown.Objectives: To determine whether necroptosis contributes to RSV bronchiolitis pathogenesis via HMGB1 (high mobility group box 1) release.Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice.Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGB1 translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life.Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma.


Subject(s)
Bronchiolitis/virology , Epithelial Cells/metabolism , Epithelial Cells/pathology , HMGB1 Protein/metabolism , Necroptosis , Respiratory Mucosa/cytology , Respiratory Syncytial Virus Infections/metabolism , Animals , Child, Preschool , Humans , Infant , Mice , Prospective Studies
13.
Allergy ; 75(2): 336-345, 2020 02.
Article in English | MEDLINE | ID: mdl-31321783

ABSTRACT

BACKGROUND: Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) is a transmembrane adaptor protein that affects immune receptor signaling in T and B cells. Evidence from genome-wide association studies of asthma suggests that genetic variants that regulate the expression of PAG1 are associated with asthma risk. However, it is not known whether PAG1 expression is causally related to asthma pathophysiology. Here, we investigated the role of PAG1 in a preclinical mouse model of house dust mite (HDM)-induced allergic sensitization and allergic airway inflammation. METHODS: Pag1-deficient (Pag1-/- ) and wild-type (WT) mice were sensitized or sensitized/challenged to HDM, and hallmark features of allergic inflammation were assessed. The contribution of T cells was assessed through depletion (anti-CD4 antibody) and adoptive transfer studies. RESULTS: Type 2 inflammation (eosinophilia, eotaxin-2 expression, IL-4/IL-5/IL-13 production, mucus production) in the airways and lungs was significantly increased in HDM sensitized/challenged Pag1-/- mice compared to WT mice. The predisposition to allergic sensitization was associated with increased airway epithelial high-mobility group box 1 (HMGB1) translocation and release, increased type 2 innate lymphoid cells (ILC2s) and monocyte-derived dendritic cell numbers in the mediastinal lymph nodes, and increased T-helper type 2 (TH 2)-cell differentiation. CD4+ T-cell depletion studies or the adoptive transfer of WT OVA-specific CD4+ T cells to WT or Pag1-/- recipients demonstrated that the heightened propensity for TH 2-cell differentiation was both T cell intrinsic and extrinsic. CONCLUSION: PAG1 deficiency increased airway epithelial activation, ILC2 expansion, and TH 2 differentiation. As a consequence, PAG1 deficiency predisposed toward allergic sensitization and increased the severity of experimental asthma.


Subject(s)
Allergens/immunology , Asthma/immunology , Lung/immunology , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Pyroglyphidae/immunology , Th2 Cells/immunology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Cytokines/metabolism , Dendritic Cells/immunology , Disease Models, Animal , HMGB1 Protein/metabolism , Immunity, Innate , Inflammation/immunology , Lung/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphoproteins/deficiency , Phosphoproteins/genetics
14.
Vet Pathol ; 57(3): 388-396, 2020 05.
Article in English | MEDLINE | ID: mdl-32314676

ABSTRACT

Lumpy skin disease is a high-consequence disease in cattle caused by infection with the poxvirus lumpy skin disease virus (LSDV). The virus is endemic in most countries in Africa and an emerging threat to cattle populations in Europe and Asia. As LSDV spreads into new regions, it is important that signs of disease are recognized promptly by animal caregivers. This study describes the gross, microscopic, and ultrastructural changes that occur over time in cattle experimentally challenged with LSDV. Four calves were inoculated with wildtype LSDV and monitored for 19 to 21 days. At 7 days after inoculation, 2 of the 4 cattle developed multifocal cutaneous nodules characteristic of LSD. Some lesions displayed a targetoid appearance. Histologically, intercellular and intracellular edema was present in the epidermis of some nodules. Occasional intracytoplasmic inclusion bodies were identified in keratinocytes. More severe and consistent changes were present in the dermis, with marked histiocytic inflammation and necrotizing fibrinoid vasculitis of dermal vessels, particularly the deep dermal plexus. Chronic lesions consisted of full-thickness necrosis of the dermis and epidermis. Lesions in other body organs were not a major feature of LSD in this study, highlighting the strong cutaneous tropism of this virus. Immunohistochemistry and electron microscopy identified LSDV-infected histiocytes and fibroblasts in the skin nodules of affected cattle. This study highlights the noteworthy lesions of LSDV and how they develop over time.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus/isolation & purification , Animals , Asia/epidemiology , Cattle , Cattle Diseases/virology , Communicable Diseases, Emerging/veterinary , Communicable Diseases, Emerging/virology , Dermatitis/pathology , Dermatitis/veterinary , Dermatitis/virology , Endemic Diseases/veterinary , Europe/epidemiology , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/pathology , Lumpy Skin Disease/transmission , Lumpy Skin Disease/virology , Lumpy skin disease virus/pathogenicity , Lumpy skin disease virus/ultrastructure , Skin/pathology , Skin/virology , Vasculitis/pathology , Vasculitis/veterinary , Vasculitis/virology
15.
N Engl J Med ; 375(26): 2561-9, 2016 12 29.
Article in English | MEDLINE | ID: mdl-28029927

ABSTRACT

A patient with recurrent multifocal glioblastoma received chimeric antigen receptor (CAR)-engineered T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 (IL13Rα2). Multiple infusions of CAR T cells were administered over 220 days through two intracranial delivery routes - infusions into the resected tumor cavity followed by infusions into the ventricular system. Intracranial infusions of IL13Rα2-targeted CAR T cells were not associated with any toxic effects of grade 3 or higher. After CAR T-cell treatment, regression of all intracranial and spinal tumors was observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid. This clinical response continued for 7.5 months after the initiation of CAR T-cell therapy. (Funded by Gateway for Cancer Research and others; ClinicalTrials.gov number, NCT02208362 .).


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Glioblastoma/therapy , Immunotherapy, Adoptive , Neoplasm Recurrence, Local/therapy , Receptors, Antigen, T-Cell/therapeutic use , Cell Engineering , Combined Modality Therapy , Humans , Interleukin-13 Receptor alpha2 Subunit , Male , Middle Aged
16.
Biol Blood Marrow Transplant ; 23(6): 922-929, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28267593

ABSTRACT

Standard-dose 90yttrium-ibritumomab tiuxetan (.4 mci/kg) together with high-dose BEAM (BCNU, etoposide, cytarabine, and melphalan) (Z-BEAM) has been shown to be a well-tolerated autologous hematopoietic stem cell transplantation preparative regimen for non-Hodgkin lymphoma. We report the outcomes of a single-center, single-arm phase II trial of Z-BEAM conditioning in high-risk CD20+ non-Hodgkin lymphoma histologic strata: diffuse large B cell (DLBCL), mantle cell, follicular, and transformed. Robust overall survival and notably low nonrelapse mortality rates (.9% at day +100 for the entire cohort), with few short- and long-term toxicities, confirm the safety and tolerability of the regimen. In addition, despite a high proportion of induction failure patients (46%), the promising response and progression-free survival (PFS) rates seen in DLBCL (3-year PFS: 71%; 95% confidence interval, 55 to 82%), support the premise that the Z-BEAM regimen is particularly effective in this histologic subtype. The role of Z-BEAM in other strata is less clear in the context of the emergence of novel agents.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lymphoma, Non-Hodgkin/therapy , Adult , Aged , Antigens, CD20/analysis , Carmustine/therapeutic use , Cytarabine/therapeutic use , Etoposide/therapeutic use , Female , Histological Techniques , Humans , Male , Melphalan/therapeutic use , Middle Aged , Remission Induction , Salvage Therapy/methods , Survival Analysis , Young Adult
17.
J Allergy Clin Immunol ; 138(5): 1326-1337, 2016 11.
Article in English | MEDLINE | ID: mdl-27236500

ABSTRACT

BACKGROUND: Frequent viral lower respiratory infections in early life are an independent risk factor for asthma onset. This risk and the development of persistent asthma are significantly greater in children who later become sensitized. OBJECTIVE: We sought to elucidate the pathogenic processes that underlie the synergistic interplay between allergen exposures and viral infections. METHODS: Mice were inoculated with a murine-specific Pneumovirus species (pneumonia virus of mice [PVM]) and exposed to low-dose cockroach extract (CRE) in early and later life, and airway inflammation, remodeling, and hyperreactivity assessed. Mice were treated with anti-IL-33 or apyrase to neutralize or block IL-33 release. RESULTS: PVM infection or CRE exposure alone did not induce disease, whereas PVM/CRE coexposure acted synergistically to induce the hallmark features of asthma. CRE exposure during viral infection in early life induced a biphasic IL-33 response and impaired IFN-α and IFN-λ production, which in turn increased epithelial viral burden, airway smooth muscle growth, and type 2 inflammation. These features were ameliorated when CRE-induced IL-33 release was blocked or neutralized, whereas substitution of CRE with exogenous IL-33 recapitulated the phenotype observed in PVM/CRE-coexposed mice. Mechanistically, IL-33 downregulated viperin and interferon regulatory factor 7 gene expression and rapidly degraded IL-1 receptor-associated kinase 1 expression in plasmacytoid dendritic cells both in vivo and in vitro, leading to Toll-like receptor 7 hyporesponsiveness and impaired IFN-α production. CONCLUSION: We identified a hitherto unrecognized function of IL-33 as a potent suppressor of innate antiviral immunity and demonstrate that IL-33 contributes significantly to the synergistic interplay between respiratory virus and allergen exposures in the onset and progression of asthma.


Subject(s)
Allergens/immunology , Asthma/immunology , Cockroaches , Cytokines/immunology , Insect Proteins/immunology , Murine pneumonia virus , Pneumovirus Infections/immunology , Air Pollutants/immunology , Animals , Asthma/virology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , Dendritic Cells/immunology , Lung/virology , Mice, Inbred BALB C , Pneumovirus Infections/virology , Viral Load
18.
Clin Gastroenterol Hepatol ; 14(3): 395-402.e5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26545803

ABSTRACT

BACKGROUND & AIMS: Chronic granulomatous disease (CGD) is an inherited disorder of the reduced nicotinamide adenine dinucleotide phosphate oxidase complex within phagocytic cells that predisposes people to bacterial and fungal infections. Approximately 40% of patients with CGD have gastrointestinal involvement. We aimed to characterize the endoscopic features of gastrointestinal CGD and define the role of endoscopy in patients. METHODS: We created a database of all patients with CGD seen at the National Institutes of Health from 1990 through 2010. We identified patients who had an endoscopy, and collected information from those with CGD-associated inflammatory bowel disease. We analyzed clinical data (demographic information and symptoms), endoscopic data (indication, preparation quality, degree of inflammation, mucosal findings, and complications), and pathologic data. RESULTS: A total of 211 endoscopies (96 esophagogastroduodenoscopies, 82 colonoscopies, and 33 flexible sigmoidoscopies) were performed at the National Institutes of Health on 78 patients with CGD. Esophageal, gastric, and duodenal inflammation were detected in 21%, 74%, and 37% of patients, respectively. Esophageal dysmotility and structural abnormalities were noted in 26%. Of the patients who had colonic CGD-inflammatory bowel disease, 74% had skip lesions and 93% had anorectal disease. Enteric fistulae were found in 18% of patients; 73% of these were perianal. Colonic strictures were observed in 24% of patients; 80% were in the anorectal area. CONCLUSIONS: Based on an analysis of clinical and endoscopic data from 78 patients, CGD-inflammatory bowel disease is a distinct entity, primarily involving the anus and rectum, with skip lesions in the remaining bowel. Bowel strictures and fistulae are present in a significant number of patients. Upper gastrointestinal tract inflammatory disease is common, although typically not as severe as colonic disease. Upper and lower endoscopies are important in characterizing the gastrointestinal features of CGD.


Subject(s)
Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/pathology , Gastrointestinal Tract/pathology , Granulomatous Disease, Chronic/complications , Granulomatous Disease, Chronic/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Endoscopy , Female , Humans , Male , Middle Aged , National Institutes of Health (U.S.) , Retrospective Studies , United States/epidemiology , Young Adult
19.
Mol Pharm ; 13(10): 3468-3477, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27571217

ABSTRACT

A synergy between the polymer biomaterial and drug plays an important role in enhancing the therapeutic efficacy, improving the drug stability, and minimizing the local immune responses in the development of drug delivery systems. Particularly, in the case of ocular drug delivery, the need for the development of synergistic drug delivery system becomes more pronounced because of the wet ocular mucosal surface and highly innervated cornea, which elicit a strong inflammatory response to the instilled drug formulations. This article presents the development of a synergistic cysteamine delivery nanowafer to treat corneal cystinosis. Corneal cystinosis is a rare metabolic disease that causes the accumulation of cystine crystals in the cornea resulting in corneal opacity and loss of vision. It is treated with topical cysteamine (Cys) eye drops that need to be instilled 6-12 times a day throughout the patient's life, which causes side effects such as eye pain, redness, and ocular inflammation. As a result, compliance and treatment outcomes are severely compromised. To surmount these issues, we have developed a clinically translatable Cys nanowafer (Cys-NW) that can be simply applied on the eye with a fingertip. During the course of the drug release, Cys-NW slowly dissolves and fades away. The in vivo studies in cystinosin knockout mice demonstrated twice the therapeutic efficacy of Cys-NW containing 10 µg of Cys administered once a day, compared to 44 µg of Cys as topical eye drops administered twice a day. Furthermore, Cys-NW stabilizes Cys for up to four months at room temperature compared to topical Cys eye drops that need to be frozen or refrigerated and still remain active for only 1 week. The Cys-NW, because of its enhanced therapeutic efficacy, safety profile, and extended drug stability at room temperature, can be rapidly translated to the clinic for human trials.


Subject(s)
Cornea/metabolism , Cysteamine/administration & dosage , Cysteamine/therapeutic use , Cystinosis/drug therapy , Cystinosis/metabolism , Animals , Cornea/drug effects , Cystine/metabolism , Drug Delivery Systems/methods , Female , Mass Spectrometry , Mice , Mice, Inbred C57BL , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/therapeutic use , Treatment Outcome
20.
J Allergy Clin Immunol ; 136(4): 1065-73, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25930193

ABSTRACT

BACKGROUND: A variant in the IL-6 receptor (IL-6R) gene increases asthma risk and is predicted to decrease IL-6 classic signaling and increase IL-6 trans-signaling. This suggests that inhibition of IL-6 trans-signaling, but not classic signaling, might suppress allergic airway inflammation. OBJECTIVES: We sought to determine whether IL-6 signaling contributes to (1) acute experimental asthma induced by clinically relevant allergens and (2) variation in asthma clinical phenotypes in asthmatic patients. METHODS: Mice were sensitized to house dust mite (HDM) or cockroach at day 0, treated with IL-6R inhibitors at day 13, and challenged with the same allergen at days 14 to 17. End points were measured 3 hours after the final challenge. IL-6 and soluble IL-6 receptor (sIL-6R) expression in induced sputum of asthmatic patients was correlated with asthma clinical phenotypes. RESULTS: Both HDM and cockroach induced a type 2/type 17 cytokine profile and mixed granulocytic inflammation in the airways. Both allergens increased IL-6 expression in the airways, but only cockroach induced sIL-6R expression. Therefore HDM challenge promoted IL-6 classic signaling but not trans-signaling; in this model treatment with anti-IL-6R did not suppress airway inflammation. In contrast, cockroach-induced inflammation involved activation of IL-6 trans-signaling and production of IL-17A by γδ T cells. Anti-IL-6R, selective blockade of sIL-6R, or γδ T-cell deficiency significantly attenuated cockroach-induced inflammation. Asthmatic patients with high airway IL-6 and sIL-6R levels were enriched for the neutrophilic and mixed granulocytic subtypes. CONCLUSION: Experimental asthma associated with both high IL-6 and high sIL-6R levels in the airways is attenuated by treatment with IL-6R inhibitors.


Subject(s)
Asthma/immunology , Interleukin-6/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Interleukin-6/immunology , Signal Transduction/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Allergens/immunology , Allergens/toxicity , Animals , Asthma/chemically induced , Asthma/pathology , Cockroaches/immunology , Mice , Pyroglyphidae/immunology , Signal Transduction/drug effects , Th17 Cells/pathology , Th2 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL