Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Hum Genomics ; 17(1): 60, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37420260

ABSTRACT

This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Male , Humans , Female , Fragile X Syndrome/drug therapy , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Autism Spectrum Disorder/genetics , DNA Methylation/genetics , Mosaicism , Biological Variation, Population , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
2.
Molecules ; 28(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770958

ABSTRACT

Dihydrofolate reductase (DHFR) is a crucial enzyme that maintains the levels of 5,6,7,8-tetrahydrofolate (THF) required for the biological synthesis of the building blocks of DNA, RNA, and proteins. Over-activation of DHFR results in the progression of multiple pathological conditions such as cancer, bacterial infection, and inflammation. Therefore, DHFR inhibition plays a major role in treating these illnesses. Sesquiterpenes of various types are prime metabolites derived from the marine sponge Dactylospongia elegans and have demonstrated antitumor, anti-inflammation, and antibacterial capacities. Here, we investigated the in silico potential inhibitory effects of 87 D. elegans metabolites on DHFR and predicted their ADMET properties. Compounds were prepared computationally for molecular docking into the selected crystal structure of DHFR (PDB: 1KMV). The docking scores of metabolites 34, 28, and 44 were the highest among this series (gscore values of -12.431, -11.502, and -10.62 kcal/mol, respectively), even above the co-crystallized inhibitor SRI-9662 score (-10.432 kcal/mol). The binding affinity and protein stability of these top three scored compounds were further estimated using molecular dynamic simulation. Compounds 34, 28, and 44 revealed high binding affinity to the enzyme and could be possible leads for DHFR inhibitors; however, further in vitro and in vivo investigations are required to validate their potential.


Subject(s)
Folic Acid Antagonists , Porifera , Sesquiterpenes , Animals , Molecular Dynamics Simulation , Molecular Docking Simulation , Tetrahydrofolate Dehydrogenase/chemistry , Folic Acid Antagonists/chemistry , Porifera/metabolism , Sesquiterpenes/pharmacology
3.
Molecules ; 28(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36838749

ABSTRACT

The discovery of natural drug metabolites is a leading contributor to fulfilling the sustainable development goal of finding solutions to global health challenges. Depsidones are a class of polyketides that have been separated from lichens, fungi, sponges, and plants and possess various bioactivities, including cytotoxic, antimicrobial, antimalarial, antituberculosis, acetylcholinesterase and α-glucosidase inhibition, and anti-inflammatory effects. Endocannabinoid receptors (CB1 and CB2) are G-protein-coupled receptors (GPCRs), and their activation mediates many physiological processes. CB1 is the dominant subtype in the central nervous system, while CB2 is mainly expressed in the immune system. The two receptors exhibit high heterogeneity, making developing selective ligands a great challenge. Attempts to develop CB2 selective agonists for treating inflammatory diseases and neuropathic pain have not been successful due to the high homology of the binding sites of the CB receptors. In this work, 235 depsidones from various sources were investigated for the possibility of identifying CB2-selective agonists by performing multiple docking studies, including induced fit docking and Prime/molecular mechanics-generalized Born surface area (MM-GBSA) calculations to predict the binding mode and free energy. Simplicildone J (10), lobaric acid (110), mollicellin Q (101), garcinisidone E (215), mollicellin P (100), paucinervin Q (149), and boremexin C (161) had the highest binding scores (-12.134 kcal/mol, -11.944 kcal/mol, -11.479 kcal/mol, -11.394 kcal/mol, -11.322 kcal/mol, -11.305 kcal/mol, and -11.254 kcal/mol, respectively) when screened against the CB2 receptor (PDB ID: 6KPF). The molecular dynamic simulation was performed on the compounds with the highest binding scores. The computational outcomes show that garcinisidone E (215) and paucinervin Q (149) could be substantial candidates for CB2 receptor activation and warrant further in vivo and in vitro investigations.


Subject(s)
Cannabinoid Receptor Agonists , Molecular Dynamics Simulation , Cannabinoid Receptor Agonists/chemistry , Receptor, Cannabinoid, CB2 , Acetylcholinesterase , Ligands , Receptor, Cannabinoid, CB1 , Molecular Docking Simulation
5.
Molecules ; 26(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34206005

ABSTRACT

Phenanthroindolizidines, such as antofine and tylophorine, are a family of natural alkaloids isolated from different species of Asclepiadaceas. They are characterized by interesting biological activities, such as pronounced cytotoxicity against different human cancerous cell lines, including multidrug-resistant examples. Nonetheless, these derivatives are associated with severe neurotoxicity and loss of in vivo activity due to the highly lipophilic nature of the alkaloids. Here, we describe the development of highly polar prodrugs of antofine and tylophorine as hypoxia-targeted prodrugs. The developed quaternary ammonium salts of phenanthroindolizidines showed high chemical and metabolic stability and are predicted to have no penetration through the blood-brain barrier. The designed prodrugs displayed decreased cytotoxicity when tested under normoxic conditions. However, their cytotoxic activity considerably increased when tested under hypoxic conditions.


Subject(s)
Alkaloids/chemistry , Antineoplastic Agents/chemical synthesis , Indoles/chemistry , Indolizines/chemistry , Phenanthrenes/chemistry , Phenanthrolines/chemistry , Prodrugs/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/pharmacology , Tumor Hypoxia/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cricetulus , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , MCF-7 Cells , Molecular Structure , Prodrugs/chemistry , Prodrugs/pharmacology , Quaternary Ammonium Compounds/chemistry , Structure-Activity Relationship
6.
Curr Ther Res Clin Exp ; 95: 100647, 2021.
Article in English | MEDLINE | ID: mdl-34777640

ABSTRACT

BACKGROUND: Although dopamine D2 receptor agonists, bromocriptine and cabergoline, are notable medications in the treatment of Parkinsonism, hyperprolactinemia, and hyperglycemia, there is an identified relationship between the utilization of D2-like R agonists and the progress of myocardial injury, especially in the early phase of therapy. OBJECTIVE: This investigation aimed to examine the potential activity of sarpogrelate (a 5-hydroxytryptamine 2A [5-HT2A] receptor blocker) in reducing myocardial injury prompted by extended haul utilization of D2 receptor agonists in a model of diabetic rats. METHODS: In the in vivo studies, both bromocriptine and cabergoline were managed independently and combined with sarpogrelate for about a month in diabetic nephropathy rats. Blood glucose level and other myocardial biochemical parameters were estimated. The probable mechanism for insulin secretagogue action was evaluated through in vitro isolated islets study. Sodium/potassium-adenosine triphosphatase activity was assayed in an isolated microsomal fraction of the renal cortex. Isolated perfused rat hearts were treated with different doses of dopamine before and after being subjected to the tested drugs, dose response of heart rate, and heart contractility were recorded. RESULTS: Bromocriptine and cabergoline created a significant reduction in blood glucose level without any action on insulin secretagogues. Bromocriptine prevented the loss of sodium/potassium-adenosine triphosphatase activity in the cortex of an ischemic kidney. Treatment of bromocriptine or cabergoline with sarpogrelate altogether decreased the levels of the elevated myocardial biomarkers in serum. Administration of different doses of dopamine in presence of bromocriptine or capergoline resulted in significantly rising in the heart rate percentage comparing to dopamine alone. A mix of bromocriptine or cabergoline with sarpogrelate diminished both heart rate and contractility, respectively. CONCLUSIONS: The examination demonstrated that the combined use of sarpogrelate with bromocriptine or cabergoline decreased the potential adverse effects of these 2 drugs on myocardial tissues.

7.
Front Cell Dev Biol ; 12: 1344039, 2024.
Article in English | MEDLINE | ID: mdl-38298219

ABSTRACT

Glucose is the major source of chemical energy for cell functions in living organisms. The aim of this mini-review is to provide a clearer and simpler picture of the fundamentals of glucose transporters as well as the relationship of these transporters to Alzheimer's disease. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic databases (PubMed and ScienceDirect) were used to search for relevant studies mainly published during the period 2018-2023. This mini-review covers the two main types of glucose transporters, facilitated glucose transporters (GLUTs) and sodium-glucose linked transporters (SGLTs). The main difference between these two types is that the first type works through passive transport across the glucose concentration gradient. The second type works through active co-transportation to transport glucose against its chemical gradient. Fluctuation in glucose transporters translates into a disturbance of normal functioning, such as Alzheimer's disease, which may be caused by a significant downregulation of GLUTs most closely associated with insulin resistance in the brain. The first sign of Alzheimer's is a lack of GLUT4 translocation. The second sign is tau hyperphosphorylation, which is caused by GLUT1 and 3 being strongly upregulated. The current study focuses on the use of glucose transporters in treating diseases because of their proven therapeutic potential. Despite this, studies remain insufficient and inconclusive due to the complex and intertwined nature of glucose transport processes. This study recommends further understanding of the mechanisms related to these vectors for promising future therapies.

8.
Heliyon ; 10(10): e31448, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813141

ABSTRACT

APAP (Acetaminophen)-induced hepatic injury is a major public health threat that requires continuous searching for new effective therapeutics. KSG (Kaempferol-3-sophoroside-7-glucoside) is a kaempferol derivative that was separated from plant species belonging to different genera. This study explored the protective effects of KSG on ALI (acute liver injury) caused by APAP overdose in mice and elucidated its possible mechanisms. The results showed that KSG pretreatment alleviated APAP-induced hepatic damage as it reduced hepatic pathological lesions as well as the serum parameters of liver injury. Moreover, KSG opposed APAP-associated oxidative stress and augmented hepatic antioxidants. KSG suppressed the inflammatory response as it decreased the genetic and protein expression as well as the levels of inflammatory cytokines. Meanwhile, KSG enhanced the mRNA expression and level of anti-inflammatory cytokine, IL-10 (interleukin-10). KSG repressed the activation of NF-κB (nuclear-factor kappa-B), besides it promoted the activation of Nrf2 signaling. Additionally, KSG markedly hindered the elevation of ASK-1 (apoptosis-signal regulating-kinase-1) and JNK (c-Jun-N-terminal kinase). Furthermore, KSG suppressed APAP-induced apoptosis as it decreased the level and expression of Bax (BCL2-associated X-protein), and caspase-3 concurrent with an enhancement of anti-apoptotic protein, Bcl2 in the liver. More thoroughly, Computational studies reveal indispensable binding affinities between KSG and Keap1 (Kelch-like ECH-associated protein-1), ASK1 (apoptosis signal-regulating kinase-1), and JNK1 (c-Jun N-terminal protein kinase-1) with distinctive tendencies for selective inhibition. Taken together, our data showed the hepatoprotective capacity of KSG against APAP-produced ALI via modulation of Nrf2/NF-κB and JNK/ASK-1/caspase-3 signaling. Henceforth, KSG could be a promising hepatoprotective candidate for ALI.

9.
J Microsc Ultrastruct ; 11(4): 199-205, 2023.
Article in English | MEDLINE | ID: mdl-38213654

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental illness that leads to repetitive behavior and debilitates social communication. Genetic changes such as susceptible genes and environmental factors promote ASD pathogenesis. Mutations in neuroligins (NLGNs) and neurexin (NRXNs) complex which encode cell adhesion molecules have a significant part in synapses formation, transcription, and excitatory-inhibitory balance. The ASD pathogenesis could partly, at the least, be related to synaptic dysfunction. Here, the NRXNs and NLGNs genes and signaling pathways involved in the synaptic malfunction that causes ASD have been reviewed. Besides, a new insight of NLGNs and NRXNs genes in ASD will be conferred.

10.
Saudi J Biol Sci ; 30(9): 103773, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37635837

ABSTRACT

Introduction: Cisplatin interacts with DNA and induces an immunological response and reactive oxygen species, which are nephrotoxic mediators. Stem cells self-renew through symmetric divisions and can develop into other cell types due to their multipotency. Dexpanthenol has been proven to protect against renal injury. Aim: This study aims to demonstrate that dexpanthenol could improve the effect of adipose-derived mesenchymal stem cells (ADMSC) against cisplatin-induced acute kidney injury. Methods: Sixty male Sprague-Dawley rats were divided into 5 groups (N = 12): control, cisplatin, cisplatin & dexpanthenol, cisplatin & ADMSC, and cisplatin & dexpanthenol & ADMSCs. On the 5th day following cisplatin injection, half the rats in each group were sacrificed, and the other half were sacrificed on the 12th day. Histopathological examination, molecular studies (IL-6, Bcl2, TGFß-1, Caspase-3, Fibronectin, and ß-catenin), antioxidants (superoxide dismutase and catalase), and renal function were all investigated. Results: In contrast to cisplatin group, the dexpanthenol and ADMSCs treatments significantly decreased renal function and oxidative stress while significantly enhancing antioxidants. Dexpanthenol improved stem cells by significantly down-regulating caspase-3, IL-6, TGF-ß1, Fibronectin, and ß-catenin and significantly up-regulating Bcl2 and CD34, which reversed the cisplatin effect. Conclusion: Dexpanthenol enhanced ADMSCs' ability to protect against cisplatin-induced AKI by decreasing inflammation, apoptosis, and fibrosis.

11.
Cureus ; 15(10): e47849, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37899898

ABSTRACT

Background Growing knowledge supports the importance of microRNAs (miRNAs) in modulating the initiation and development of breast cancer (BC) and underlying mechanisms. BC is a significant public health in females worldwide, where it remains the leading cause of death among Saudi females. Here, we evaluate the susceptibility of the miRNA genetic variants to the risk of BC in Saudi females. Methods One hundred fifty-four females, including 76 females diagnosed with BC and 78 healthy controls, were analyzed using TaqMan™ (Thermo Fischer Scientific, Waltham, MA) genotyping assays for the miR-196a2 rs11614913 C>T, miR-146a rs2910164 C>G, and miR-499 rs3746444 A>G. We utilized the SNPStats software (https://www.snpstats.net) (Institut Català d'Oncologia, Barcelona, Spain) to choose the best interactive inheritance model for the examined miRNAs. Results The examined miRNA single-nucleotide polymorphisms (SNPs) showed no clear association with the risk of BC (P > 0.05). As for genotypic distributions, significant associations were found for the rs2910164 SNP in most interactive models of inheritance: 2.50 (95% confidence interval {CI}, 1.2-5.17; P = 0.0135) in the codominant model, 2.34 (95% CI, 1.11-4.8; P = 0.0197) in the dominant model, and 2.40 (95% CI, 1.22-4.73; P = 0.0113) in overdominant model. The rs2910164 C/G heterozygosity showed overexpression in cases compared to controls (73.7% versus 53.9%; chi-squared (χ2) = 6.5; P = 0.0109), but the homozygous rs2910164 G/G showed a significant protective effect (21.1% versus 38.5%; χ2 = 17.4; P = 0.019). The heterozygosity did not affect the risk to the BC in the two miRNAs (rs11614913 C>T and rs3746444 A>G). Conclusion Despite lacking associations with the examined miRNAs, the heterozygous genotype rs2910164 C/G can identify at-risk females. More studies should be replicated using a panel of miRNA genes to discover significant associations with the risk of BC.

12.
Cureus ; 15(3): e36293, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36937130

ABSTRACT

BACKGROUND: The PSMB8 and PSMB9 immunoproteasome genes are essential in cell processes, such as decisions on cell survival or death, the cell cycle, and cellular differentiation. Because recent evidence has demonstrated an immunological role for proteasomes in various malignancies, including urothelial bladder carcinoma (UBC), we evaluated single nucleotide polymorphisms (SNPs) in PSMB9 and PSMB8. We determined any associations between these SNPs and susceptibility to UBC in the Saudi community. METHODS: Samples of genomic DNA were taken from buccal cells of 111 patients with UBC and 78 healthy controls. TaqMan Real-Time PCR was used to determine genotype distributions and allele frequencies for the PSMB9 rs17587 G>A and PSMB8 rs2071543 G>T SNPs. We used SNPStats (https://www.snpstats.net) to choose each SNP's best interactive inheritance model. RESULTS: The PSMB9 rs17587 SNP was associated with the risk of UBC (odds ratio [OR] = 5.21, P < 0.0001). In contrast, the PSMB8 rs2071543 SNP showed no association with UBC risk (OR = 1.13, P = 0.7871). In terms of genotypic distribution, the rs17587 G>A SNP was more frequent in UBC cases than controls in both the dominant (OR = 7.5; 95% confidence interval, 3.7-15.1; P = 0.0051) and recessive (OR = 17.11, 95% confidence interval 5.1-57.4; P = 0.0026) models. Genotypic distribution of the PSMB8 rs2071543 G>T SNP was not significantly different between cases and controls in any interactive inheritance models (P > 0.05). CONCLUSION: These results suggest a potential role for PSMB9 as a biomarker for increased UBC risk. Discovering more genetic variants within immunoproteasome genes related to antigen presentation could help further our understanding of this risk.

13.
Microorganisms ; 11(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37374934

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is known to be associated with resistance to practically all known antibiotics. This is a cross-sectional, descriptive, laboratory-based analytical study in which 200 P. aeruginosa clinical isolates were involved. The DNA of the most resistant isolate was extracted and its whole genome was sequenced, assembled, annotated, and announced, strain typing was ascribed, and it was subjected to comparative genomic analysis with two susceptible strains. The rate of resistance was 77.89%, 25.13%, 21.61%, 18.09%, 5.53%, and 4.52% for piperacillin, gentamicin, ciprofloxacin, ceftazidime, meropenem, and polymyxin B, respectively. Eighteen percent (36) of the tested isolates exhibited a MDR phenotype. The most MDR strain belonged to epidemic sequence type 235. Comparative genomic analysis of the MDR strain (GenBank: MVDK00000000) with two susceptible strains revealed that the core genes were shared by the three genomes but there were accessory genes that were strain-specific, and this MDR genome had a low CG% (64.6%) content. A prophage sequence and one plasmid were detected in the MDR genome, but amazingly, it contained no resistant genes for drugs with antipseudomonal activity and there was no resistant island. In addition, 67 resistant genes were detected, 19 of them were found only in the MDR genome and 48 genes were efflux pumps, and a novel deleterious point mutation (D87G) was detected in the gyrA gene. The novel deleterious mutation in the gyrA gene (D87G) is a known position behind quinolone resistance. Our findings emphasize the importance of adoption of infection control strategies to prevent dissemination of MDR isolates.

14.
Arch Osteoporos ; 17(1): 123, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36107272

ABSTRACT

This study describes that low bone density is prevalent in premenopausal Saudi women, especially women of normal weight and vitamin D deficiency. Although BMD is higher in obese young women, this may not be beneficial later in life in conjunction with persistent vitamin D deficiency. INTRODUCTION: Not attaining peak bone mass is one crucial factor contributing to the risk of developing osteoporosis and suffering fractures in later life. The objectives of this study were to describe the normal range of bone mineral density (BMD) and bone mineral content (BMC) in premenopausal Saudi women in relation to obesity and vitamin D insufficiency. METHODS: A cross-sectional study involving 312 healthy Saudi women aged 20-40. All women were clinically examined. BMD (g/cm2) and BMC (g) assessed at total body (TB), femoral neck (FN) and lumbar spine (LS) were performed using dual-energy X-ray absorptiometry (DXA). Obesity was defined as BMI ≥ 30 kg/m2 and vitamin D deficiency defined as 25(OH)D < 50 nmol/L. RESULTS: Almost half of the studied women were obese, and the majority (86.2%) were deficient in vitamin D. Mean BMD in TB 1.060 ± 0.091, FN 0.918 ± 0.153 and LS 1.118 ± 0.123 g/cm2, while TB-BMC 2077 ± 272 g. When classified by BMI, the proportion with low bone density was 2-3 times higher among the normal weight compared to the obese women, p < 0.001. In the cohort overall, ~ 19% of these young premenopausal women had osteopenia or osteoporosis at the femoral neck, but 26% in normal weight, vitamin D deficient women. CONCLUSION: This study shows low bone density in premenopausal Saudi women, particularly those with normal weight. While obesity appears to confer some protection against vitamin D deficiency at this age, this is assumed to change in later life.


Subject(s)
Osteoporosis , Vitamin D Deficiency , Bone Density , Cross-Sectional Studies , Female , Humans , Obesity/epidemiology , Osteoporosis/epidemiology , Osteoporosis/etiology , Saudi Arabia/epidemiology , Vitamin D , Vitamin D Deficiency/epidemiology
15.
BMC Pharmacol Toxicol ; 22(1): 64, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702339

ABSTRACT

BACKGROUND: Dopamine D2 receptor agonists, bromocriptine and cabergoline, are notable medications in the treatment of Parkinsonism, hyperprolactinemia, and hyperglycemia. An affiliation was found between the initiation of myocardial injury ailment and long term treatment with dopamine D2 agonist drugs identified with the partial activation of 5-hydroxytryptamine receptor 2 A (5-HT2A). The investigation aimed to examine the activity of sarpogrelate (a 5-HT2A receptor blocker) in reducing myocardial injury prompted by extended haul utilisation of D2 receptor agonists in rats with alloxan-induced diabetes. METHODS: Both bromocriptine and cabergoline were managed independently and combined with sarpogrelate for about a month in diabetic nephropathy rats. Both tail-cuff blood pressure and the BGL were recorded weekly. For all animals, the kidney hypertrophy index, serum creatinine, blood urea nitrogen, alanine transaminase, and aspartate transaminase levels were measured after one month of treatment. The severity of the cardiac injury was assessed by the estimation of lactate dehydrogenase-1 (LDH-1), cardiac troponin I, and tumor necrosis factor alpha 1 (TNF1). The triphenyltetrazolium chloride (TTC) staining method was used to determine the experimental myocardial infarction (MI) size. RESULTS: Bromocriptine and cabergoline created a significant reduction in BGL, BP, and kidney hypertrophy index in diabetic nephropathy rats. Administration of bromocriptine and cabergoline, alone, or in combination with sarpogrelate fundamentally diminished the blood concentrations of alkaline phosphatase (ALP), Aspartate aminotransferase (AST), urea, and creatinine. Bromocriptine and cabergoline alone showed a noteworthy increase in the LDH-1, Troponin I, and TNF1 levels in the serum (p < 0.05). Paradoxically, utilising bromocriptine or cabergoline with sarpogrelate treatment altogether decreased the levels of the myocardial biomarkers in the serum. A mix of bromocriptine or cabergoline with sarpogrelate diminished the level of the myocardial infarct size in the heart assessed through the TTC staining method. CONCLUSIONS: The examination demonstrated that the combined use of sarpogrelate with bromocriptine or cabergoline decreased the potential adverse effects of these two drugs on the myocardial tissues.


Subject(s)
Bromocriptine/therapeutic use , Cabergoline/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Dopamine Agonists/therapeutic use , Myocardial Infarction/drug therapy , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Succinates/therapeutic use , Animals , Blood Glucose/drug effects , Bromocriptine/pharmacology , Cabergoline/pharmacology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Dopamine Agonists/pharmacology , Drug Therapy, Combination , Isoenzymes/blood , Kidney/drug effects , Kidney/pathology , L-Lactate Dehydrogenase/blood , Male , Myocardial Infarction/blood , Myocardial Infarction/pathology , Myocardium/pathology , Rats, Wistar , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Succinates/pharmacology , Troponin I/blood , Tumor Necrosis Factor-alpha/blood
16.
J Ethnopharmacol ; 281: 114552, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34438028

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kirenol (Kr) is an ent-pimarane type diterpenoid that has been reported from Siegesbeckiaorientalis, S. pubescens, and S. glabrescens (family Asteraceae). These plants have been used traditionally for treating various ailments such as hypertension, neurasthenia, rheumatoid arthritis, asthma, snakebites, allergic disorders, paralysis, soreness, cutaneous disorders, rubella, menstrual disorders, numbness of limbs, dizziness, headache, and malaria. Importantly, in recent years, Kr has received great attention due to its diversified pharmacological activities. AIM OF THE STUDY: The current work aims to give an overview on the reported pharmacological activities of Kr. Furthermore, the findings regarding its methods for extraction, quantitative analysis, purification, pharmacokinetics, pharmaceutical and food preparations, biosynthesis, identification, semisynthetic analogues, and toxicity are highlighted to provide a reference and perspective for its further investigation. METHODS: Electronic databases including ScienceDirect, Web of Knowledge, SCOPUS, Wiley Online Library, Taylor & Francis, PubMed, Springer, JACS, and Google Scholar were searched up to the beginning of 2021 to identify the reported studies. RESULTS: A total of 93 articles have been reviewed. The reported data suggested that Kr possessed various bioactivities including cytotoxic, apoptotic, anticancer, anti-inflammatory, cardio-protective, anti-photo-aging, anti-adipogenic, antimicrobial, muscle function improvement, fracture and wound healing, and anti-arthritic. In addition, studies revealed that the antioxidative and anti-inflammatory activities of Kr may mediate many of its therapeutic potentials as confirmed by several in-vitro and in-vivo studies. CONCLUSION: This review provides an updated summary of the recent studies on Kr, including methods for extraction, quantitative analysis, purification, pharmacokinetics, pharmaceutical and food preparations, biosynthesis, and identification, as well as semisynthetic analogues, pharmacological activities, and toxicity. Thus, this work can provide useful considerations for planning and design future research on Kr.


Subject(s)
Asteraceae/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Asteraceae/metabolism , Diterpenes/metabolism , Humans , Molecular Structure
17.
Int J Gen Med ; 14: 1311-1323, 2021.
Article in English | MEDLINE | ID: mdl-33883929

ABSTRACT

PURPOSE: Colorectal carcinoma (CRC) represents a considerable public health burden in Saudi Arabia. Several candidate genes and genetic variants have been associated with morbidity and mortality among patients with CRC. We explored whether allelic variants of the GSTM1, GSTT1, CYP450 (rs4646903 and rs1048943), and TP53 (rs1042522) genes predisposed nonsmoking Saudi individuals to increased risk for CRC. PATIENTS AND METHODS: DNA from buccal cells of 158 participants (80 with CRC and 78 healthy controls) were analyzed for five SNPs using conventional PCR and TaqMan genotyping assays. The SNPStats software was utilized to choose the best interactive inheritance mode for selected SNPs (https://www.snpstats.net). RESULTS: The mean age of diagnosis was 62.4±13.5 years (range, 40-83 years), with those aged 71-80 years and those aged 40-50 years accounting for the most diagnoses (35.7% and 28.6% of diagnosis, respectively). The GSTM1 and TP53 rs1042522 SNPs were associated with CRC (OR= 3.7; P< 0.0001, and OR= 1.6; P= 0.033, respectively). A plausible contribution to CRC was observed for the GSTM1 and TP53 rs1042522 SNPs (x 2 Yates= 14.7; P= 0.00013, and x 2 Yates= 11.2; P= 0.0008, respectively), while the GSTT1 null variant did not affect risk. Heterozygosity in the CYP450 (rs4646903 and rs1048943 SNPs) was associated with a significant risk for CRC. The GSTM1/GSTT1 and CYP450 rs4646903/rs1048943 SNP pairs were in linkage disequilibrium, and the associations were statistically significant (P= 0.01 and P= 4.6x10‒7, respectively). CONCLUSION: The GSTM1 and TP53 rs1042522 variants can increase the development of CRC in Saudi nonsmokers. Even the presence of one copy of a variant allele in the CYP1A1 gene can predispose CRC risk. Additional studies should also examine other SNP combinations with lifestyle factors that may help prevent, rather than facilitate, colorectal tumorigenesis.

18.
Int J Gen Med ; 14: 10031-10044, 2021.
Article in English | MEDLINE | ID: mdl-34984025

ABSTRACT

BACKGROUND: The antigen processing 1 (TAP1) and proteasome 20S subunit beta 9 (PSMB9) genes are associated with strong susceptibility to many autoimmune diseases. Here, we explored whether TAP1/PSMB9 genetic variants, individually or combined, affected susceptibility to the complex, autoimmune-based skin disorder vitiligo. METHODS: Samples of genomic DNA from buccal cells of 172 patients with vitiligo and 129 healthy controls were analyzed using TaqMan™ genotyping assays for the TAP1 rs1135216 (A>G) and PSMB9 rs17587 (A>G) single nucleotide polymorphisms (SNPs). SNPStats software (https://www.snpstats.net) was utilized to choose the best interactive inheritance mode for selected SNPs. RESULTS: The genotype frequencies for the TAP1 rs1135216 and PSMB9 rs17587 SNPs were in Hardy-Weinberg equilibrium for cases (P= 0.11 and P= 0.10, respectively) but not for controls (P< 0.05). The TAP1 rs1135216 (D637G) and PSMB9 rs17587 (R60H) SNPs increased the risk of vitiligo four-fold and two-fold, respectively (odds ratio [OR]= 4.6; 95% confidence interval [CI], 3.2-6.5; P< 0.0001 and OR= 2.2; 95% CI, 1.5-3.1; P< 0.0001). The recessive model (G/G-D/G versus D/D) and the codominant model (R/R versus R/H) were the best models of inheritance for the rs113526 and rs17587 SNPs, respectively (OR= 16.4; 95% CI, 2.0-138; P= 0.0006 and OR= 1.7; 95% CI, 0.3-1.8; P= 0.013). Vulgaris, focal vulgaris, and acryl/acrofacial were the most common vitiligo subtypes in our sample (51%, 21%, and 19%, respectively). Heterozygous rs113526 (637D/G) and rs17587 (60R/H) were the most common genotypes in most vitiligo subtypes. The heterozygous 637D/G genotype and the 637G variant allele were significantly more common in patients with active disease than in patients with stable disease (P= 0.000052 and P= 0.0063, respectively). CONCLUSION: Our findings suggest a crucial role for TAP1 rs1135216 and PSMB9 rs17587 in the risk and progression of vitiligo in the Saudi community. Genomic analyses are needed to identify more candidate genes and more genetic variants associated with vitiligo.

19.
Pak J Biol Sci ; 23(2): 139-149, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31944073

ABSTRACT

BACKGROUND AND OBJECTIVE: Chitinase enzymes have a various application in the field of environmental, biotechnology and medical aspects. This study aimed to the production of the chitinolytic enzymes from different species of bacteria. MATERIALS AND METHODS: Bacterial isolation from different habitats was carried out on agar medium containing chitin as carbon and nitrogen sources. The obtained bacteria (20) were characterized and screened again in chitin broth medium. RESULTS: Out of 20 bacterial isolate, 2 new isolates, belonged to Streptomyces laurentii SN5 and Cellulosimicrobium funkei SN20, were the most active in chitin degradation compared to the other isolates. They have been characterized for the first time for their chitinase activity. They were identified using 16S rRNA gene analysis and in the liquid medium, the 2 isolates have enzyme activities of 0.533 and 0.537 U mL-1, respectively. The maximum chitinase production was obtained when those bacterial strains were grown in Luria-Bertani (LB) broth amended with 1% colloidal chitin, for 1 day and at temperature of 30°C. The optimum pH value for chitinase production was pH 7 for both S. laurentii and C. funkei. The enzyme has been purified using Sephadex G-100 and DEAE-Cellulose chromatography column and found to have a similar molecular size of ~50 kDa. CONCLUSION: Those two bacterial species could be used in chitinase production and in the environmental recycling of disposable chitin wastes such as chitin from shrimp shell waste.


Subject(s)
Chitin/chemistry , Chitinases/chemistry , Crustacea , Streptomyces/enzymology , Actinobacteria/enzymology , Animals , Biopolymers/chemistry , Colloids/chemistry , Hydrogen-Ion Concentration , Molecular Weight , Nitrogen/chemistry , Phylogeny , RNA, Ribosomal, 16S , Temperature
20.
Neurodegener Dis Manag ; 5(2): 137-45, 2015.
Article in English | MEDLINE | ID: mdl-25894877

ABSTRACT

Synaptic damage is a key hallmark of Alzheimer's disease and the best correlate with cognitive decline ante mortem. Signature protein combinations arrayed at tightly apposed pre- and post-synaptic sites characterize different types of synapse. Neuroligins are postsynaptic cell adhesion molecules that interact with neurexins across the synaptic cleft. These pairings recruit receptors, channels and signal transduction molecules to the synapse, and help mediate trans-synaptic transmission. Dysfunction in the neuroligin family can disrupt neuronal networks and leads to neurodegeneration and other diseases. The extracellular domain of neuroligins is homologous with acetylcholinesterase but lacks residues required for enzymatic activity. This domain may interact pathogenically with ß-amyloid. Here we summarize research over the last decade on the potential involvement of neuroligins in Alzheimer's disease.


Subject(s)
Alzheimer Disease/physiopathology , Cell Adhesion Molecules, Neuronal/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL