Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Pept Sci ; 26(4-5): e3245, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32103604

ABSTRACT

Conformations of disulfide and diselenide were compared in (Boc-Cys/Sec-NHMe)2 and (Boc-Cys/Sec-OMe)2 using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT), and circular dichroism (CD) spectroscopy. Conformations of disulfide/diselenide in polypeptides are defined based on the sign of side chain torsion angle χ3 (-CH2 -S/Se-S/Se-CH2 -); negative indicates left-handed and positive indicates right-handed orientation. In the crystals of (Boc-Cys-OMe)2 and (Boc-Sec-OMe)2 , the disulfide exhibits a left-handed and the diselenide a right-handed orientation. Characterization of cystine and selenocystine derivatives in solution using 1 H-NMR, natural abundant 77 Se NMR, 2D-ROESY, and chemical shift analysis coupled to DMSO titration has indicated the symmetrical nature and antiparallel orientation of Cys/Sec residues about the disulfide/diselenide bridges. Structural calculations of cystine and selenocystine derivatives using DFT further support the antiparallel orientation of Cys/Sec residues about disulfide/diselenide. The far-ultraviolet (UV) region CD spectra of cystine and selenocystine derivatives have exhibited the negative Cotton effect (CE) for disulfide and positive for diselenide confirming the difference in the conformational preference of disulfide and diselenide. In the previously reported polymorphic structure of (Boc-Sec-OMe)2 , the diselenide has right-handed orientation. In the X-ray structures of disulfide and diselenide analogues of Escherichia coli protein encoded by curli specific gene C (CgsC) retrieved from Protein Databank (PDB), disulfide has left-handed and the diselenide right-handed orientation. The current report provides the evidence for the local conformational difference between a disulfide and a diselenide group under unconstrained conditions, which may be useful for the rational replacement of disulfide by diselenide in polypeptide chains.


Subject(s)
Cystine/chemistry , Disulfides/chemistry , Organoselenium Compounds/chemistry , Crystallography, X-Ray , Cystine/analogs & derivatives , Density Functional Theory , Models, Molecular , Peptides/chemistry , Protein Conformation
2.
Nanoscale Adv ; 6(10): 2602-2610, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38752143

ABSTRACT

Embedding nanoparticles with different functionalities into soft substrates is a convenient tool to realize technologically significant multifunctional materials. This study focuses on incorporating bimetallic plasmonic nanoparticles into soft crystals made of cetyltrimethylammonium bromide-iodide. We observed the emergence of a novel symmetry-lowered cetrimonium crystal polymorph that enables the realization of strong interparticle plasmonic coupling in these composite materials. The observed crystal polymorph exhibits a triclinic structure with significantly reduced unit cell volume compared to standard CTAB. Solid-state nuclear magnetic resonance studies revealed an enhanced cetrimonium chain rigidity and a commensurate decrease in the mobility of the methyl groups. This is attributed to iodide incorporation. To study the influence of these interactions on solution phase dynamical properties, we employed light scattering measurements using gold nanospheres as markers, where we observed aggregation of these particles. We then develop a two step synthetic scheme that successfully enables high levels (533 particles per µm2) of incorporation of bimetallic plasmonic particles into the emergent crystal polymorph.

3.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38555733

ABSTRACT

Herein, we report the synthesis and characterization of novel 1,3,4-oxadiazole derivatives, 2-methoxybenzyl 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate (C1) 2-methoxybenzyl 5-(2-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate (C2), and methoxybenzyl 5-(3-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate (C3) obtained through desulfurative cyclization reaction. The compound C2 was crystallized, and its crystal structure was elucidated using single-crystal X-ray diffraction technique. The Hirshfeld surface analysis was carried out to analyze, visualize and globally appreciate the weak interactions involved in crystal packing. These analyses were complemented by Quantum Theory of Atoms In Molecules (QTAIM) and Reduced Density Gradient (RDG), which allowed us to decipher the nature and types of attractive forces that contribute to maintain the crystal structure of the titled compound. Moreover, the ADME profile of the compound was predicted to assess its drug likeness. Finally, in silico studies were performed to explore the binding affinity of the compounds (C1-3) against Myelofibrosis through molecular docking and molecular dynamic simulations.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL