Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Cell ; 177(2): 256-271.e22, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879788

ABSTRACT

We previously reported that inducing gamma oscillations with a non-invasive light flicker (gamma entrainment using sensory stimulus or GENUS) impacted pathology in the visual cortex of Alzheimer's disease mouse models. Here, we designed auditory tone stimulation that drove gamma frequency neural activity in auditory cortex (AC) and hippocampal CA1. Seven days of auditory GENUS improved spatial and recognition memory and reduced amyloid in AC and hippocampus of 5XFAD mice. Changes in activation responses were evident in microglia, astrocytes, and vasculature. Auditory GENUS also reduced phosphorylated tau in the P301S tauopathy model. Furthermore, combined auditory and visual GENUS, but not either alone, produced microglial-clustering responses, and decreased amyloid in medial prefrontal cortex. Whole brain analysis using SHIELD revealed widespread reduction of amyloid plaques throughout neocortex after multi-sensory GENUS. Thus, GENUS can be achieved through multiple sensory modalities with wide-ranging effects across multiple brain areas to improve cognitive function.


Subject(s)
Acoustic Stimulation/methods , Alzheimer Disease/therapy , Cognition/physiology , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Animals , Auditory Perception/physiology , Brain/metabolism , Disease Models, Animal , Gamma Rhythm/physiology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Plaque, Amyloid/metabolism
2.
Proc Natl Acad Sci U S A ; 119(11): e2107337119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35254897

ABSTRACT

SignificanceGoal-directed spatial navigation has been found to rely on hippocampal neurons that are spatially modulated. We show that "nonplace" cells without significant spatial modulation play a role in discriminating goals when environmental cues for goals are ambiguous. This nonplace cell activity is performance-dependent and is modulated by gamma oscillations. Finally, nonplace cell goal discrimination coding fails in a mouse model of Alzheimer's disease (AD). Together, these results show that nonplace cell firing can signal unique task-relevant information when spatial information is ambiguous; these signals depend on performance and are absent in a mouse model of AD.


Subject(s)
Discrimination Learning , Hippocampus/cytology , Hippocampus/physiology , Spatial Navigation , Action Potentials , Animals , Brain Waves , Cues , Environment , Mice , Pyramidal Cells/physiology
3.
Nature ; 562(7725): E1, 2018 10.
Article in English | MEDLINE | ID: mdl-30046102

ABSTRACT

Change history: In this Article, Extended Data Fig. 8 and Extended Data Table 1 contained errors, which have been corrected online.

4.
Nature ; 540(7632): 230-235, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27929004

ABSTRACT

Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-ß (Aß)1-40 and Aß 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aß. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aß1-40 and Aß1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Gamma Rhythm , Microglia/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/prevention & control , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Cell Shape/drug effects , Disease Models, Animal , Female , Gamma Rhythm/radiation effects , Interneurons/metabolism , Interneurons/radiation effects , Light , Male , Mice , Microglia/cytology , Microglia/radiation effects , Optogenetics , Parvalbumins/metabolism , Peptide Fragments/metabolism , Plaque, Amyloid/therapy , Transcriptome , Visual Cortex/physiology , Visual Cortex/radiation effects
5.
J Neurosci ; 40(6): 1211-1225, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31871276

ABSTRACT

Many neurodegenerative and neurological diseases are rooted in dysfunction of the neuroimmune system; therefore, manipulating this system has strong therapeutic potential. Prior work has shown that exposing mice to flickering lights at 40 Hz drives gamma frequency (∼40 Hz) neural activity and recruits microglia, the primary immune cells of the brain, revealing a novel method to manipulate the neuroimmune system. However, the biochemical signaling mechanisms between 40 Hz neural activity and immune recruitment remain unknown. Here, we exposed wild-type male mice to 5-60 min of 40 Hz or control flicker and assessed cytokine and phosphoprotein networks known to play a role in immune function. We found that 40 Hz flicker leads to increases in the expression of cytokines which promote microglial phagocytic states, such as IL-6 and IL-4, and increased expression of microglial chemokines, such as macrophage-colony-stimulating factor and monokine induced by interferon-γ. Interestingly, cytokine effects differed as a function of stimulation frequency, revealing a range of neuroimmune effects of stimulation. To identify possible mechanisms underlying cytokine expression, we quantified the effect of the flicker on intracellular signaling pathways known to regulate cytokine levels. We found that a 40 Hz flicker upregulates phospho-signaling within the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. While cytokine expression increased after 1 h of 40 Hz flicker stimulation, protein phosphorylation in the NF-κB pathway was upregulated within minutes. Importantly, the cytokine expression profile induced by 40 Hz flicker was different from cytokine changes in response to acute neuroinflammation induced by lipopolysaccharides. These results are the first, to our knowledge, to show how visual stimulation rapidly induces critical neuroimmune signaling in healthy animals.SIGNIFICANCE STATEMENT Prior work has shown that exposing mice to lights flickering at 40 Hz induces neural spiking activity at 40 Hz (within the gamma frequency) and recruits microglia, the primary immune cells of the brain. However, the immediate effect of 40 Hz flicker on neuroimmune biochemical signaling was unknown. We found that 40 Hz flicker leads to significant increases in the expression of cytokines, key immune signals known to recruit microglia. Furthermore, we found that 40 Hz flicker rapidly changes the phosphorylation of proteins in the NF-κB and MAPK pathways, both known to regulate cytokine expression. Our findings are the first to delineate a specific rapid immune signaling response following 40 Hz visual stimulation, highlighting both the unique nature and therapeutic potential of this treatment.


Subject(s)
Brain/physiology , Cytokines/metabolism , Gamma Rhythm/physiology , Neuroimmunomodulation/physiology , Photic Stimulation , Animals , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Photic Stimulation/methods , Signal Transduction/physiology
6.
J Neurosci ; 38(7): 1821-1834, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29279309

ABSTRACT

Repeated sequences of neural activity are a pervasive feature of neural networks in vivo and in vitro In the hippocampus, sequential firing of many neurons over periods of 100-300 ms reoccurs during behavior and during periods of quiescence. However, it is not known whether the hippocampus produces longer sequences of activity or whether such sequences are restricted to specific network states. Furthermore, whether long repeated patterns of activity are transmitted to single cells downstream is unclear. To answer these questions, we recorded intracellularly from hippocampal CA1 of awake, behaving male mice to examine both subthreshold activity and spiking output in single neurons. In eight of nine recordings, we discovered long (900 ms) reoccurring subthreshold fluctuations or "repeats." Repeats generally were high-amplitude, nonoscillatory events reoccurring with 10 ms precision. Using statistical controls, we determined that repeats occurred more often than would be expected from unstructured network activity (e.g., by chance). Most spikes occurred during a repeat, and when a repeat contained a spike, the spike reoccurred with precision on the order of ≤20 ms, showing that long repeated patterns of subthreshold activity are strongly connected to spike output. Unexpectedly, we found that repeats occurred independently of classic hippocampal network states like theta oscillations or sharp-wave ripples. Together, these results reveal surprisingly long patterns of repeated activity in the hippocampal network that occur nonstochastically, are transmitted to single downstream neurons, and strongly shape their output. This suggests that the timescale of information transmission in the hippocampal network is much longer than previously thought.SIGNIFICANCE STATEMENT We found long (≥900 ms), repeated, subthreshold patterns of activity in CA1 of awake, behaving mice. These repeated patterns ("repeats") occurred more often than expected by chance and with 10 ms precision. Most spikes occurred within repeats and reoccurred with a precision on the order of 20 ms. Surprisingly, there was no correlation between repeat occurrence and classical network states such as theta oscillations and sharp-wave ripples. These results provide strong evidence that long patterns of activity are repeated and transmitted to downstream neurons, suggesting that the hippocampus can generate longer sequences of repeated activity than previously thought.


Subject(s)
CA1 Region, Hippocampal/physiology , Synapses/physiology , Wakefulness/physiology , Algorithms , Animals , Behavior, Animal/physiology , Kinetics , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/physiology , Neurons/physiology , Patch-Clamp Techniques , Synaptic Transmission/physiology
7.
J Neurosci ; 37(45): 10817-10825, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118210

ABSTRACT

Neurological disease drives symptoms through pathological changes to circuit functions. Therefore, understanding circuit mechanisms that drive behavioral dysfunction is of critical importance for quantitative diagnosis and systematic treatment of neurological disease. Here, we describe key technologies that enable measurement and manipulation of neural activity and neural circuits. Applying these approaches led to the discovery of circuit mechanisms underlying pathological motor behavior, arousal regulation, and protein accumulation. Finally, we discuss how optogenetic functional magnetic resonance imaging reveals global scale circuit mechanisms, and how circuit manipulations could lead to new treatments of neurological diseases.


Subject(s)
Magnetic Resonance Imaging/methods , Molecular Imaging/methods , Neural Pathways/anatomy & histology , Animals , Brain/physiology , Humans , Nervous System Diseases/diagnostic imaging , Neural Pathways/diagnostic imaging , Optogenetics
8.
J Neurophysiol ; 118(2): 1270-1291, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28566460

ABSTRACT

Seconds-scale network states, affecting many neurons within a network, modulate neural activity by complementing fast integration of neuron-specific inputs that arrive in the milliseconds before spiking. Nonrhythmic subthreshold dynamics at intermediate timescales, however, are less well characterized. We found, using automated whole cell patch clamping in vivo, that spikes recorded in CA1 and barrel cortex in awake mice are often preceded not only by monotonic voltage rises lasting milliseconds but also by more gradual (lasting tens to hundreds of milliseconds) depolarizations. The latter exert a gating function on spiking, in a fashion that depends on the gradual rise duration: the probability of spiking was higher for longer gradual rises, even when controlled for the amplitude of the gradual rises. Barrel cortex double-autopatch recordings show that gradual rises are shared across some, but not all, neurons. The gradual rises may represent a new kind of state, intermediate both in timescale and in proportion of neurons participating, which gates a neuron's ability to respond to subsequent inputs.NEW & NOTEWORTHY We analyzed subthreshold activity preceding spikes in hippocampus and barrel cortex of awake mice. Aperiodic voltage ramps extending over tens to hundreds of milliseconds consistently precede and facilitate spikes, in a manner dependent on both their amplitude and their duration. These voltage ramps represent a "mesoscale" activated state that gates spike production in vivo.


Subject(s)
CA1 Region, Hippocampal/physiology , Evoked Potentials , Membrane Potentials , Wakefulness , Animals , Male , Mice , Mice, Inbred C57BL
9.
Learn Mem ; 22(4): 232-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25787711

ABSTRACT

Over the last decade, there has been much excitement about the use of optogenetic tools to test whether specific cells, regions, and projection pathways are necessary or sufficient for initiating, sustaining, or altering behavior. However, the use of such tools can result in side effects that can complicate experimental design or interpretation. The presence of optogenetic proteins in cells, the effects of heat and light, and the activity of specific ions conducted by optogenetic proteins can result in cellular side effects. At the network level, activation or silencing of defined neural populations can alter the physiology of local or distant circuits, sometimes in undesired ways. We discuss how, in order to design interpretable behavioral experiments using optogenetics, one can understand, and control for, these potential confounds.


Subject(s)
Optogenetics/methods , Animals , Brain/physiology , Neurons/physiology , Optogenetics/adverse effects
10.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826251

ABSTRACT

Background: Current clinical trials are investigating gamma frequency sensory stimulation as a potential therapeutic strategy for Alzheimer's disease, yet we lack a comprehensive picture of the effects of this stimulation on multiple aspects of brain function. While most prior research has focused on gamma frequency sensory stimulation, we previously showed that exposing mice to visual flickering stimulation increased MAPK and NFκB signaling in the visual cortex in a manner dependent on duration and frequency of sensory stimulation exposure. Because these pathways control multiple neuronal and glial functions and are differentially activated based on the duration and frequency of flicker stimulation, we aimed to define the transcriptional effects of different frequencies and durations of flicker stimulation on multiple brain functions. Methods: We exposed 5xFAD mice to different frequencies of audio/visual flicker stimulation (constant light, 10Hz, 20Hz, 40Hz) for durations of 0.5hr, 1hr, or 4hr, then used bulk RNAseq to profile transcriptional changes within the visual cortex and hippocampus tissues. Using weighted gene co-expression network analysis, we identified modules of co-expressed genes controlled by frequency and/or duration of stimulation. Results: Within the visual cortex, we found that all stimulation frequencies caused fast activation of a module of immune genes within 1hr and slower suppression of synaptic genes after 4hrs of stimulation. Interestingly, all frequencies of stimulation led to slow suppression of astrocyte specific gene sets, while activation of neuronal gene sets was frequency and duration specific. In contrast, in the hippocampus, immune and synaptic modules were suppressed based on the frequency of stimulation. Specifically,10Hz activated a module of genes associated with mitochondrial function, metabolism, and synaptic translation while 10Hz rapidly suppressed a module of genes linked to neurotransmitter activity. Conclusion: Collectively, our data indicate that the frequency and duration of flicker stimulation controls immune, neuronal, and metabolic genes in multiple regions of the brain affected by Alzheimer's disease. Flicker stimulation may thus represent a potential therapeutic strategy that can be tuned based on the brain region and the specific cellular process to be modulated.

11.
Nat Commun ; 15(1): 3156, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605017

ABSTRACT

Modulating brain oscillations has strong therapeutic potential. Interventions that both non-invasively modulate deep brain structures and are practical for chronic daily home use are desirable for a variety of therapeutic applications. Repetitive audio-visual stimulation, or sensory flicker, is an accessible approach that modulates hippocampus in mice, but its effects in humans are poorly defined. We therefore quantified the neurophysiological effects of flicker with high spatiotemporal resolution in patients with focal epilepsy who underwent intracranial seizure monitoring. In this interventional trial (NCT04188834) with a cross-over design, subjects underwent different frequencies of flicker stimulation in the same recording session with the effect of sensory flicker exposure on local field potential (LFP) power and interictal epileptiform discharges (IEDs) as primary and secondary outcomes, respectively. Flicker focally modulated local field potentials in expected canonical sensory cortices but also in the medial temporal lobe and prefrontal cortex, likely via resonance of stimulated long-range circuits. Moreover, flicker decreased interictal epileptiform discharges, a pathological biomarker of epilepsy and degenerative diseases, most strongly in regions where potentials were flicker-modulated, especially the visual cortex and medial temporal lobe. This trial met the scientific goal and is now closed. Our findings reveal how multi-sensory stimulation may modulate cortical structures to mitigate pathological activity in humans.


Subject(s)
Epilepsies, Partial , Epilepsy , Humans , Brain , Electroencephalography , Temporal Lobe , Cross-Over Studies
12.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961524

ABSTRACT

Navigating a dynamic world requires rapidly updating choices by integrating past experiences with new information. In hippocampus and prefrontal cortex, neural activity representing future goals is theorized to support planning. However, it remains unknown how prospective goal representations incorporate new, pivotal information. Accordingly, we designed a novel task that precisely introduces new information using virtual reality, and we recorded neural activity as mice flexibly adapted their planned destinations. We found that new information triggered increased hippocampal prospective representations of both possible goals; while in prefrontal cortex, new information caused prospective representations of choices to rapidly shift to the new choice. When mice did not flexibly adapt, prefrontal choice codes failed to switch, despite relatively intact hippocampal goal representations. Prospective code updating depended on the commitment to the initial choice and degree of adaptation needed. Thus, we show how prospective codes update with new information to flexibly adapt ongoing navigational plans.

13.
eNeuro ; 10(2)2023 02.
Article in English | MEDLINE | ID: mdl-36754625

ABSTRACT

Rhythmic neural activity, which coordinates brain regions and neurons to achieve multiple brain functions, is impaired in many diseases. Despite the therapeutic potential of driving brain rhythms, methods to noninvasively target deep brain regions are limited. Accordingly, we recently introduced a noninvasive stimulation approach using flickering lights and sounds ("flicker"). Flicker drives rhythmic activity in deep and superficial brain regions. Gamma flicker spurs immune function, clears pathogens, and rescues memory performance in mice with amyloid pathology. Here, we present substantial improvements to this approach that is flexible, user-friendly, and generalizable across multiple experimental settings and species. We present novel open-source methods for flicker stimulation across rodents and humans. We demonstrate rapid, cross-species induction of rhythmic activity without behavioral confounds in multiple settings from electrophysiology to neuroimaging. This flicker approach provides an exceptional opportunity to discover the therapeutic effects of brain rhythms across scales and species.


Subject(s)
Brain Waves , Brain , Humans , Animals , Mice , Brain/physiology , Brain Waves/physiology , Cognition , Neurons , Amyloid , Photic Stimulation/methods
14.
medRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993248

ABSTRACT

Modulating brain oscillations has strong therapeutic potential. However, commonly used non-invasive interventions such as transcranial magnetic or direct current stimulation have limited effects on deeper cortical structures like the medial temporal lobe. Repetitive audio-visual stimulation, or sensory flicker, modulates such structures in mice but little is known about its effects in humans. Using high spatiotemporal resolution, we mapped and quantified the neurophysiological effects of sensory flicker in human subjects undergoing presurgical intracranial seizure monitoring. We found that flicker modulates both local field potential and single neurons in higher cognitive regions, including the medial temporal lobe and prefrontal cortex, and that local field potential modulation is likely mediated via resonance of involved circuits. We then assessed how flicker affects pathological neural activity, specifically interictal epileptiform discharges, a biomarker of epilepsy also implicated in Alzheimer's and other diseases. In our patient population with focal seizure onsets, sensory flicker decreased the rate interictal epileptiform discharges. Our findings support the use of sensory flicker to modulate deeper cortical structures and mitigate pathological activity in humans.

15.
Sci Adv ; 9(32): eadf5672, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556553

ABSTRACT

Microglia transform in response to changes in sensory or neural activity, such as sensory deprivation. However, little is known about how specific frequencies of neural activity, or brain rhythms, affect microglia and cytokine signaling. Using visual noninvasive flickering sensory stimulation (flicker) to induce electrical neural activity at 40 hertz, within the gamma band, and 20 hertz, within the beta band, we found that these brain rhythms differentially affect microglial morphology and cytokine expression in healthy animals. Flicker induced expression of certain cytokines independently of microglia, including interleukin-10 and macrophage colony-stimulating factor. We hypothesized that nuclear factor κB (NF-κB) plays a causal role in frequency-specific cytokine and microglial responses because this pathway is activated by synaptic activity and regulates cytokines. After flicker, phospho-NF-κB colabeled with neurons more than microglia. Inhibition of NF-κB signaling down-regulated flicker-induced cytokine expression and attenuated flicker-induced changes in microglial morphology. These results reveal a mechanism through which brain rhythms affect brain function by altering microglial morphology and cytokines via NF-κB.


Subject(s)
Brain , Cytokines , Microglia , NF-kappa B , Animals , Brain/metabolism , Cytokines/metabolism , Microglia/metabolism , NF-kappa B/metabolism , Signal Transduction
16.
Curr Opin Neurobiol ; 76: 102604, 2022 10.
Article in English | MEDLINE | ID: mdl-35810533

ABSTRACT

Hippocampal inhibitory interneurons exert a powerful influence on learning and memory. Inhibitory interneurons are known to play a major role in many diseases that affect memory, and to strongly influence brain functions required for memory-related tasks. While previous studies involving genetic, optogenetic, and pharmacological manipulations have shown that hippocampal interneurons play essential roles in spatial and episodic learning and memory, exactly how interneurons affect local circuit computations during spatial navigation is not well understood. Given the significant anatomical, morphological, and functional heterogeneity in hippocampal interneurons, one may suspect cell-type specific roles in circuit computations. Here, we review emerging evidence of CA1 hippocampal interneurons' role in local circuit computations that support spatial learning and memory and discuss open questions about CA1 interneurons in spatial learning.


Subject(s)
CA1 Region, Hippocampal , Spatial Learning , CA1 Region, Hippocampal/physiology , Hippocampus , Interneurons/physiology , Optogenetics
17.
J Neurosci ; 30(35): 11586-604, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20810880

ABSTRACT

To learn we must identify and remember experiences uniquely but also generalize across experiences to extract common features. Hippocampal place cells can show similar firing patterns across locations, but the functional significance of this repetitive activity and the role of experience and learning in generating it are not understood. We therefore examined rat hippocampal place cell activity in the context of spatial tasks with multiple similar spatial trajectories. We found that, in environments with repeating elements, about half of the recorded place cells showed path-equivalent firing, where individual neurons are active in multiple similar locations. In contrast, place cells from animals performing a similar task in an environment with fewer similar elements were less likely to fire in a path-equivalent manner. Moreover, in the environment with multiple repeating elements, path equivalence developed with experience in the task, and increased path equivalence was associated with increased moment-by-moment correlations between pairs of path-equivalent neurons. As a result, correlated firing among path-equivalent neurons increased with experience. These findings suggest that coordinated hippocampal ensembles can encode generalizations across locations. Thus, path-equivalent ensembles are well suited to encode similarities among repeating elements, providing a framework for associating specific behaviors with multiple locations, while neurons without this repetitive structure maintain a distinct population code.


Subject(s)
Action Potentials/physiology , Hippocampus/physiology , Recognition, Psychology/physiology , Space Perception/physiology , Spatial Behavior/physiology , Animals , Male , Maze Learning/physiology , Rats , Rats, Long-Evans
18.
Cell Rep ; 35(3): 109008, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882308

ABSTRACT

Synapse loss and altered synaptic strength are thought to underlie cognitive impairment in Alzheimer's disease (AD) by disrupting neural activity essential for memory. While synaptic dysfunction in AD has been well characterized in anesthetized animals and in vitro, it remains unknown how synaptic transmission is altered during behavior. By measuring synaptic efficacy as mice navigate in a virtual reality task, we find deficits in interneuron connection strength onto pyramidal cells in hippocampal CA1 in the 5XFAD mouse model of AD. These inhibitory synaptic deficits are most pronounced during sharp-wave ripples, network oscillations important for memory that require inhibition. Indeed, 5XFAD mice exhibit fewer and shorter sharp-wave ripples with impaired place cell reactivation. By showing inhibitory synaptic dysfunction in 5XFAD mice during spatial navigation behavior and suggesting a synaptic mechanism underlying deficits in network activity essential for memory, this work bridges the gap between synaptic and neural activity deficits in AD.


Subject(s)
Alzheimer Disease/physiopathology , CA1 Region, Hippocampal/physiopathology , Interneurons/metabolism , Pyramidal Cells/metabolism , Spatial Navigation/physiology , Synapses/metabolism , Alzheimer Disease/metabolism , Animals , Brain Waves/physiology , CA1 Region, Hippocampal/metabolism , Disease Models, Animal , Electrodes, Implanted , Humans , Interneurons/pathology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyramidal Cells/pathology , Synapses/pathology , Synaptic Transmission/physiology , Virtual Reality
19.
Alzheimers Dement (N Y) ; 7(1): e12178, 2021.
Article in English | MEDLINE | ID: mdl-34027028

ABSTRACT

INTRODUCTION: We and collaborators discovered that flickering lights and sound at gamma frequency (40 Hz) reduce Alzheimer's disease (AD) pathology and alter immune cells and signaling in mice. To determine the feasibility of this intervention in humans we tested the safety, tolerability, and daily adherence to extended audiovisual gamma flicker stimulation. METHODS: Ten patients with mild cognitive impairment due to underlying AD received 1-hour daily gamma flicker using audiovisual stimulation for 4 or 8 weeks at home with a delayed start design. RESULTS: Gamma flicker was safe, tolerable, and adherable. Participants' neural activity entrained to stimulation. Magnetic resonance imaging and cerebral spinal fluid proteomics show preliminary evidence that prolonged flicker affects neural networks and immune factors in the nervous system. DISCUSSION: These findings show that prolonged gamma sensory flicker is safe, tolerable, and feasible with preliminary indications of immune and network effects, supporting further study of gamma stimulation in AD.

20.
Elife ; 82019 07 29.
Article in English | MEDLINE | ID: mdl-31355744

ABSTRACT

Oscillatory brain activity reflects different internal brain states including neurons' excitatory state and synchrony among neurons. However, characterizing these states is complicated by the fact that different oscillations are often coupled, such as gamma oscillations nested in theta in the hippocampus, and changes in coupling are thought to reflect distinct states. Here, we describe a new method to separate single oscillatory cycles into distinct states based on frequency and phase coupling. Using this method, we identified four theta-gamma coupling states in rat hippocampal CA1. These states differed in abundance across behaviors, phase synchrony with other hippocampal subregions, and neural coding properties suggesting that these states are functionally distinct. We captured cycle-to-cycle changes in oscillatory coupling states and found frequent switching between theta-gamma states showing that the hippocampus rapidly shifts between different functional states. This method provides a new approach to investigate oscillatory brain dynamics broadly.


Subject(s)
CA1 Region, Hippocampal/physiology , Gamma Rhythm , Theta Rhythm , Animals , Electroencephalography , Rats
SELECTION OF CITATIONS
SEARCH DETAIL