Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
BMC Plant Biol ; 24(1): 234, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561674

ABSTRACT

Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.


Subject(s)
Parthenium hysterophorus , Plants , Chlorophyll A , Himalayas , Water , Plant Leaves
2.
Planta ; 259(6): 130, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647733

ABSTRACT

MAIN CONCLUSION: This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.


Subject(s)
MicroRNAs , Stress, Physiological , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Salinity , Hydrogen-Ion Concentration , Quantitative Trait Loci/genetics , Alkalies , Plants/metabolism , Plants/genetics , Adaptation, Physiological/genetics
3.
Environ Geochem Health ; 45(1): 187-197, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35635683

ABSTRACT

Aluminum (Al) contamination in acidic soil is a major problem in paddy field, causing grain yield loss, especially in central plains of Thailand. The objective of this study was to assess Al content in the root tissues, its translocation to the leaves, and Al toxicity in three genotypes of rice, RD35 (local acidic-tolerant), Azucena (positive-check Al-tolerant), and IR64 (high yielding) under 0 (control) or 1 mM AlCl3 (Al toxicity) at pH 4.5. Al content in the root tissues of rice cv. RD35 under 1 mM AlCl3 was peaked at 4.18 mg g‒1 DW and significantly translocated to leaf tissues (0.35 mg g‒1 DW), leading to reduced leaf greenness (SPAD) (by 44.9% over the control) and declined net photosynthetic rate (Pn) (by 54.5% over the control). In contrast, Al level in cvs. Azucena and IR64 was restricted in the roots (2.12 mg g‒1 DW) with low amount of translocation in the leaf tissues (0.26 mg g‒1 DW), resulting in maintained values of SPAD and Pn. In cv. RD35, root and shoot traits including root length, root fresh weight, shoot height, shoot fresh weight, and shoot dry weight in 1 mM Al treatment were significantly dropped by > 35% over the control, whereas these parameters in cvs. Azucena and IR64 were retained. Based on the results, RD35 rice genotype was identified as Al sensitive as it demonstrated Al toxicity in both aboveground and belowground parts, whereas Azucena and IR64 were found tolerant to 1 mM Al as they demonstrated storage of Al in the root tissues to reduce toxicity in the leaf tissues. The study suggests that root traits, shoot attributes, chlorophyll degradation, and photosynthetic reduction can be successfully employed for the screening of Al-tolerant genotypes in rice breeding programs.


Subject(s)
Oryza , Aluminum/toxicity , Biological Transport , Photosynthesis , Genotype , Plant Roots/metabolism
4.
Environ Geochem Health ; 45(11): 7637-7649, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402936

ABSTRACT

Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds. The aim of this study was to assess the impact of copper (Cu) contamination on the physiology and morphology of P. indica, and the health risks associated with its consumption as tea. The cuttings of P. indica were subjected to 0 mM (control), 5 mM (low Cu), and 20 mM (excess Cu) of CuSO4 treatments for 1, 2, and 4 weeks. Thereafter, Cu contamination as well as physiological and morphological parameters were assessed. Cu accumulation was higher in the root tissues of plants (25.8 folds higher as compared to the leaves) grown under 20 mM CuSO4 for 4 weeks. This increased Cu accumulation resulted in the inhibition of root length, root fresh weight, and root dry weight. Cu concentration was found maximum (1.36 µg g-1 DW) in the leaf tissues under 20 mM Cu exposure for 4 weeks, with the highest target hazard quotient (THQ = 1.85), whereas Cu was not detected in control. Under exposure to 20 mM Cu treatment for 4 weeks, leaf greenness, maximum quantum yield of photosystem II, and photon yield of photosystem II diminished by 21.4%, 16.1%, and 22.4%, respectively, as compared to the control. Leaf temperature was increased by 2.5 °C, and the crop stress index (CSI) exceeded 0.6 when exposed to 20 mM Cu treatment for 2 and 4 weeks; however, the control had a CSI below 0.5. This led to a reduced transpiration rate and stomatal conductance. In addition, the net photosynthetic rate was also found sensitive to Cu treatment, which resulted in decreased shoot and root growth. Based on the key results, it can be suggested that P. indica herbal tea derived from the foliage of plants grown under a 5 mM Cu level (0.75 µg g-1 DW) with a target hazard quotient below one aligns with the recommended dietary intake of Cu in leafy vegetables. The study recommends choosing cuttings from plants with a small canopy as plant material in the greenhouse microclimates to validate the growth performance in the Cu-contaminated soil and simulate the natural shrub architecture and life cycle.


Subject(s)
Copper , Teas, Herbal , Copper/toxicity , Copper/chemistry , Photosystem II Protein Complex/metabolism , Photosynthesis , Antioxidants/metabolism , Plant Leaves/metabolism
5.
Environ Monit Assess ; 195(6): 730, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231282

ABSTRACT

Climate change and anthropogenic pressures have resulted in a significant shift in the invasion susceptibility and frequency of non-native species in mountain ecosystems. Cirsium arvense (L.) Scop. (Family: Asteraceae) is an invasive species that spreads quickly in mountains, especially in the trans-Himalayan region of Ladakh. The current study used a trait-based approach to evaluate the impact of local habitat heterogeneity (soil physico-chemical properties) on C. arvense. Thirteen plant functional traits (root, shoot, leaf, and reproductive traits) of C. arvense were studied in three different habitat types (agricultural, marshy, and roadside). Functional trait variability in C. arvense was higher between, than within habitats (between different populations). All the functional traits interacted with habitat change, except for leaf count and seed mass. Soil properties strongly affect C. arvense's resource-use strategies across habitats. The plant adapted to a resource-poor environment (roadside habitat) by conserving resources and to a resource-rich environment (agricultural and marshy land habitat) by acquiring them. The ability of C. arvense to use resources differently reflects its persistence in introduced habitats. In summary, our study shows that C. arvense invades different habitats in introduced regions through trait adaptations and resource-use strategies in the trans-Himalayan region.


Subject(s)
Cirsium , Ecosystem , Environmental Monitoring , Plants , Soil
6.
Environ Monit Assess ; 195(6): 725, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227526

ABSTRACT

Events of climate change have led to increased aridification, which alters local vegetation patterns and results in the invasion of opportunistic species. Though many studies assess the impact of invasive weeds and aridification at the agronomic level, studies investigating changes in local vegetation are severely lacking. We investigated the impact of the invasive plant Verbesina encelioides (Asteraceae) on the local vegetation composition across different dryland ecosystems in Punjab, northwestern India. Based on the aridity index for the period of 1991-2016, three major dryland ecosystems, i.e., arid, semi-arid, and sub-humid, were found in Punjab. The impact of V. encelioides on local biodiversity was measured in terms of species diversity (using Shannon's diversity index, Simpson's dominance index, Hill's evenness index, and Margalef's richness index), species composition (using non-metric multidimensional scaling based on Bray-Curtis's dissimilarity index), and species proportion in the two invasion classes (uninvaded and invaded) and across the three aridity zones (arid, semi-arid, and sub-humid). The vegetation survey depicted the presence of 53 flowering species belonging to 22 families, including 30 exotics and 23 natives. Verbesina encelioides decreased species diversity and proportion, with a more pronounced impact in arid and semi-arid ecosystems. In contrast, species composition varied between uninvaded and invaded classes only in arid ecosystems. Ecological parameters derived from population statistics (number of individuals) were more drastically affected than those from species abundance data. Since the ecological impacts of V. encelioides were manifested with increased aridification, it is a matter of apprehension under the potential climate change scenario.


Subject(s)
Ecosystem , Verbesina , Humans , Plant Weeds , Environmental Monitoring , Biodiversity
7.
Ecotoxicol Environ Saf ; 229: 113080, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34929504

ABSTRACT

Rice (Oryza sativa L.) is a highly consumed staple crop worldwide, but abiotic/heavy metal stresses acting on the plant cause reduction in yield and quality, thereby impacting global food security. In the present study, we examined the effect of ß-pinene against Arsenic (As)-induced oxidative damage vis-à-vis regulation of activities of enzymatic antioxidants in roots of O. sativa. Effect of As (50 µM), ß-pinene (10 µM; ß-10) and As + ß-10 treatments on root length, shoot length, As accumulation, lipid peroxidation (as malondialdehyde [MDA] content), hydrogen peroxide (H2O2) accumulation, and activities of lipoxygenase (LOX) and enzymatic antioxidants such as ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) was determined. Exposure of As caused a decline in root and shoot length, and enhancement in As accumulation, lipid peroxidation, and activities of enzymatic antioxidants. However, supplementation of ß-10 (i.e., As + ß-10 treatments) led to an increase in root and shoot length. Treatment with As + ß-10 resulted in a decline in As accumulation, H2O2 content, and MDA content; however, the effect on LOX activity was non-significant, as compared to control. Similarly, with As + ß-10 treatment a reduction in the activities of APX, GPX, GR, SOD, and CAT was observed as compared with As-alone treatment. Pearson's correlation matrix exhibited strong negative correlation between reactive oxygen species (ROS) and root/shoot length, whereas a strong positive correlation was observed between antioxidant enzymes and ROS. The present study demonstrated that ß-pinene significantly ameliorates As-induced oxidative stress and provides tolerance to O. sativa against As-induced toxicity, and thus offer an option of As-mitigation using environment friendly natural plant products. However, to gain insights into the function of ß-pinene in modulating As-induced oxidative damage in plants, further field investigations and exploration of its mechanism of action are needed.


Subject(s)
Arsenic , Oryza , Antioxidants/metabolism , Arsenic/toxicity , Bicyclic Monoterpenes , Catalase/metabolism , Hydrogen Peroxide , Lipid Peroxidation , Oryza/metabolism , Oxidative Stress , Plant Roots/metabolism , Superoxide Dismutase/metabolism
8.
Environ Monit Assess ; 195(1): 128, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36402920

ABSTRACT

Unmanned aerial vehicles (UAVs) equipped with multi-sensors are one of the most innovative technologies for measuring plant health and predicting final yield in field conditions, especially in the water deficit situation in rain-deprived regions. The objective of this investigation was to evaluate the individual plant and canopy-level measurements using UAV imageries in three different genotypes, Suwan4452 (drought-tolerant), Pac339, and S7328 (drought-sensitive) of maize (Zea mays L.) at vegetative and reproductive stages under WW (well-watered) and WD (water deficit) conditions. At the vegetative stage, only CWSI (crop water stress index) of Pac339 and S7328 under WD increased significantly by 1.86- and 1.69-fold over WW, whereas the vegetation indices (EVI2 (Enhanced Vegetation Index 2), OSAVI (Optimized Soil-Adjusted Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge Index), and NDVI (Normalized Difference Vegetation Index)) derived from UAV multi-sensors did not vary. At the reproductive stage, CWSI in drought-sensitive genotype (S7328) under WD increased by 1.92-fold over WW. All the vegetation indices (EVI2, OSAVI, GNDVI, NDRE, and NDVI) of Pac339 and S7328 under WD decreased when compared with those of Suwan4452. NDVI derived from GreenSeeker® handheld and NDVI from UAV data was closely related (R2 = 0.5924). An increase in leaf temperature (Tleaf) and reduction in NDVI of WD stressed maize plants was observed (R2 = 0.5829) leading to yield loss (R2 = 0.5198). In summary, a close correlation was observed between the physiological data of individual plants and vegetation indices of canopy level (collected using a UAV platform) in drought-sensitive genotypes of maize crops under WD conditions, thus indicating its effectiveness in the classification of drought-tolerant genotypes.


Subject(s)
Dehydration , Zea mays , Environmental Monitoring , Crops, Agricultural , Plant Leaves/physiology
9.
Molecules ; 26(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34500778

ABSTRACT

Parthenin, a sesquiterpene lactone of pseudoguaianolide type, is the representative secondary metabolite of the tropical weed Parthenium hysterophorus (Asteraceae). It accounts for a multitude of biological activities, including toxicity, allergenicity, allelopathy, and pharmacological aspects of the plant. Thus far, parthenin and its derivatives have been tested for chemotherapeutic abilities, medicinal properties, and herbicidal/pesticidal activities. However, due to the lack of toxicity-bioactivity relationship studies, the versatile properties of parthenin are relatively less utilised. The possibility of exploiting parthenin in different scientific fields (e.g., chemistry, medicine, and agriculture) makes it a subject of analytical discussion. The present review highlights the multifaceted uses of parthenin, on-going research, constraints in the practical applicability, and the possible workarounds for its successful utilisation. The main aim of this comprehensive discussion is to bring parthenin to the attention of researchers, pharmacologists, natural product chemists, and chemical biologists and to open the door for its multidimensional applications.


Subject(s)
Asteraceae/chemistry , Sesquiterpenes/pharmacology , Asteraceae/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism
10.
Environ Monit Assess ; 193(8): 526, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34322773

ABSTRACT

Industrial effluents contain hazardous substances that can be a serious threat to the agriculture and human health. In the present study, the cytotoxic and genotoxic impacts of agricultural soil from the industrial area of Dera Bassi (Punjab, India) have been evaluated. Assays such as defects in DNA repair in K-12 mutants of Escherichia coli and chromosomal aberrations in Allium cepa were used to estimate the acute toxicity and chromosomal mutagenesis, respectively. Atomic absorption spectrometry and GC-MS analysis revealed contamination of the soil with high concentrations of heavy metals and organic compounds, respectively. Dichloromethane extract of site I soil sample caused maximum damage to 40 µL mL-1 DNA repair defective mutants and showed 38 and 49% survival in lexA and recA mutants, respectively, which was least among all the sites. In A. cepa test, an inverse relationship between soil extract concentration and the mitotic index was observed. Exposure of growing roots of A. cepa to soil extracts induced chromosomal abnormalities and alterations in mitotic phases in root tip cells. The study concludes that agricultural sites near the industrial area were contaminated with genotoxic and mutagenic compounds. Hence, adequate measures should be taken to reduce the toxicity of industrial effluents discharged onto the agricultural fields.


Subject(s)
Environmental Monitoring , Soil , Agriculture , Chromosome Aberrations , DNA Damage , Humans , India , Onions/genetics , Plant Roots
11.
Environ Monit Assess ; 193(6): 334, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33973105

ABSTRACT

Calyptocarpus vialis (syn. Synedrella vialis; Asteraceae), a native of the tropical Americas, has acquired an invasive status in the eastern Asia and Africa and, of late, in India. It is an annual herbaceous weed that forms a dominant ground cover due to its prostrate expansion and interferes with the growth of other plant species. However, the reasons for this interference are largely unknown. Therefore, we examined the allelopathic interference of C. vialis via leachation and residue degradation on the emergence, growth, and development of three crop species (Brassica nigra, Triticum aestivum, and Avena sativa). In a laboratory bioassay, the leachates (0.5-4%) of C. vialis exhibited a dose-dependent inhibitory effect on various growth parameters of the test plants. Similarly, under screenhouse, C. vialis-amended soil (1-4%) affected the growth of test species in a dose-dependent manner. Further, the phytotoxicity of the residues of C. vialis was examined using rhizospheric soil (RS) and residue-amended soil (RAS). It was observed that RAS exerted the maximum allelopathic effect on the test species accompanied by significant changes in pH, electrical conductivity, and total water-soluble phenolic content, as compared with the control soil (CS) and RS. Liquid chromatography and mass spectroscopy analyses confirmed the presence of eleven allelochemicals as the major phytotoxins. The study demonstrated that C. vialis exerts strong phytotoxic effects on other plants through the release of potent allelochemicals, both via leachation and residue degradation.


Subject(s)
Asteraceae , Introduced Species , Africa , Environmental Monitoring , Asia, Eastern , India
12.
Ecotoxicol Environ Saf ; 188: 109786, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31698176

ABSTRACT

In the last few decades, tremendous increase in the use of wireless electronic gadgets, particularly the cell phones, has significantly enhanced the levels of electromagnetic field radiations (EMF-r) in the environment. Therefore, it is pertinent to study the effect of these radiations on biological systems including plants. We investigated comparative cytotoxic and DNA damaging effects of 900 and 1800 MHz EMF-r in Allium cepa (onion) root meristematic cells in terms of mitotic index (MI), chromosomal aberrations (CAs) and single cell gel electrophoresis (comet assay). Onion bulbs were subjected to 900 and 1800 MHz (at power densities 261 ±â€¯8.50 mW m-2 and 332 ±â€¯10.36 mW m-2, respectively) of EMF-r for 0.5 h, 1 h, 2 h, and 4 h. Root length declined by 13.2% and 12.3%, whereas root thickness was increased by 46.7% and 48.3% after 4 h exposure to 900 MHz and 1800 MHz, respectively. Cytogenetic studies exhibited clastogenic effect of EMF-r as depicted by increased CAs and MI. MI increased by 36% and 53% after 2 and 4 h exposure to 900 MHz EMF-r, whereas it increased by 41% and 67% in response to 1800 MHz EMF-r. Aberration index was increased by 41%-266% and 14%-257% during 0.5-4 h of exposure to 900 MHz and 1800 MHz, respectively, over the control. EMF-r exposure decreased % head DNA (DNAH) and increased % tail DNA (DNAT) and olive tail moment (OTM) at both 900 and 1800 EMF-r. In 4 h exposure treatments, head DNA (%) declined by 19% and 23% at 900 MHz and 1800 MHz, respectively. DNAT and OTM were increased by 2.3 and 3.7 fold upon exposure to 900 MHz EMF-r over that in the control, whereas 2.8 and 5.8 fold increase was observed in response to 1800 MHz EMF-r exposure for 4 h and the difference was statistically significant. The study concludes that EMF-r in the communication range (900 and 1800 MHz) adversely affect root meristems in plants and induce cytotoxic and DNA damage. EMF-r induced DNA damage was more pronounced at 1800 MHz than that at 900 MHz.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Damage , Electromagnetic Fields/adverse effects , Electromagnetic Radiation , Meristem/radiation effects , Onions/radiation effects , Cell Phone , Comet Assay , Dose-Response Relationship, Radiation , Meristem/cytology , Meristem/genetics , Mitotic Index , Onions/cytology , Onions/genetics , Time Factors
13.
Ecotoxicol Environ Saf ; 171: 863-870, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30665103

ABSTRACT

In the present study, the essential oil (EO) of Hyptis suaveolens has been explored for the first time for its phytotoxic and cytotoxic activities. The phytotoxic activity was assessed against rice (Oryza sativa) and its major troublesome weed, Echinochloa crus-galli, under laboratory and screenhouse conditions. GC-MS analysis revealed EO to be monoterpenoid (~ 79% monoterpenes) in nature with α-phellandrene (22.8%), α-pinene (10.1%) and limonene (8.5%) as the major chemical constituents. The laboratory bioassay showed a complete growth inhibitory effect of EO (≥ 2 mg mL-1) towards the germination and seedling growth of E. crus-galli. However, the inhibitory effect on rice was much less (~40% inhibition). EO caused visible injury, reduction in chlorophyll content, cell viability and ultimately led to complete wilting of E. crus-galli plants. In addition, EO altered the cell division in the meristematic cells of Allium cepa as depicted by ~63% decrease in mitotic index. EO exposure induced several aberrations at chromosomal (c-mitosis, anaphase bridges, chromosomal breakage, vagrant chromosomes, and sticky chromosomes) and cytological level (cytoplasm destruction, peripheral nuclei, and bi-nucleate cells). The present study concludes that H. suaveolens EO possesses phytotoxic activity due to its mito-depressive activity, and could serve as a natural herbicide under sustainable agricultural practices.


Subject(s)
Herbicides , Hyptis/chemistry , Oils, Volatile/toxicity , Plant Oils/toxicity , Bicyclic Monoterpenes , Cell Division , Chromosome Aberrations , Cyclohexane Monoterpenes , Echinochloa/drug effects , Echinochloa/growth & development , Germination/drug effects , Herbicides/chemistry , Herbicides/toxicity , Limonene/analysis , Monoterpenes/analysis , Oils, Volatile/chemistry , Oryza/drug effects , Plant Oils/chemistry
14.
J Environ Manage ; 241: 187-197, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31003061

ABSTRACT

Invasive plant species constantly adjust their behavior with ecological shifts by virtue of phenotypic plasticity and/or local adaptations. Changes in the phenotype of an invasive species may also trigger variations in its community level impacts, which is an acceptable, yet unexplored aspect of invasion biology. Our study attempts to fill important knowledge gaps on the basic behavior and ecological interactions of invasive species. Parthenium hysterophorus, a widely distributed invasive alien species of tropical and sub-tropical regions, was evaluated for variations in its morpho-functional traits and ecological performance at a common spatial and temporal scale. Field surveys were conducted in Chandigarh, India, in five sites identified as invaded with P. hysterophorus. Individuals of P. hysterophorus randomly sampled from these sites, showed from trait analyses that the population is differentiated into two morphotypes, PA and PB. Morphotype PB exhibits traits comparable to the shrub life-form in terms of woody stem (with higher stem circumference [+32.26%], stem specific density [+128.57%], twig dry matter content [+25.15%]); profuse branching (+46.38%); larger canopy (+91.16%); and better reproductive output (+190.29%) compared to PA. PA, on the other hand, reflected herbaceous characteristics with greater leaf area (+67.58%) and higher content of chlorophyll (+21.92%) compared to PB. Based on these morphotypes, the plots were divided into three invasion categories: areas invaded by PA [IPA], areas invaded by PB [IPB] and uninvaded areas [UI]. Ecological indices and soil chemical properties were compared across IPA, IPB and UI. Shannon's index (p < 0.001), evenness index (p = 0.008), and richness index (p < 0.001) were significantly lower in IPB compared to IPA. UI areas were found to have higher soil pH, phenolics, organic matter, and concentrations of N, P and K, compared to IPA and IPB, but lower Ca and Mg. Results suggest that phenotypic variations within population of P. hysterophorus regulate its ecological impact on associated vegetation. Conservation managers would benefit from studying its invasion patterns and identifying the morphotype with higher ecological impact to prioritize management efforts. Monitoring these behavioral and ecological patterns in P. hysterophorus over the long-term may also help in anticipating challenges to preventive measures.


Subject(s)
Asteraceae , Introduced Species , Biological Variation, Population , Humans , India , Soil
15.
Physiol Mol Biol Plants ; 25(4): 821-835, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31402812

ABSTRACT

Drought or water deficit is a major abiotic stress that can reduce growth and productivity in the rice crop especially in the rain-fed areas, which face long-term water shortage. The objective of this investigation was to promote the drought tolerant abilities in pigmented rice cv. 'Hom Nil' at booting stage using arbuscular mycorrhizal fungi (AMF)-inoculation, mixed spores of Glomus geosporum, G. etunicatum and G. mosseae in the soil before rice seedling transplantation. At booting stage, the AMF-inoculated (+AMF) and AMF-uninoculated plants (-AMF) were subjected to control (well-watering; 46.6% SWC) and water deficit condition (14 days water withholding; 13.8% SWC). Colonization percentage in the AMF-inoculated root tissues were evidently proved in both with and without water deficit conditions, leading to elevate total phosphorus in root and leaf tissues. Interestingly, sucrose and total soluble sugar concentration in the flag leaf were increased by 5.0 folds and 1.5 folds, respectively in the plants under water deficit (WD). Free proline was accumulated in flag leaf when exposure to water deficit, subsequently regulated by AMF-inoculation. Total soluble sugar and free proline enrichment in 'Hom Nil' was a major mode of osmotic adjustment to control osmotic potential in the cellular level when exposed to water deficit, leading to maintained photosynthetic abilities and growth performances. Concentration of chlorophyll b in AMF-inoculated plants under water deficit stress was retained, causing to improve chlorophyll fluorescence and net photosynthetic rate. Shoot height and number of tillers were significantly declined by 12.5% and 11.6%, respectively, when subjected to WD. At the harvest, grain yield, panicle dry weight and fertility percentage of AMF-inoculated rice from WD were greater than those without AMF by 1.5, 3.9 and 2.4 folds, respectively. Cyanidin-3-glucoside and peonidin-3-glucoside concentrations in pericarp were enriched in the grain derived from AMF-inoculation with water deficit stress. Overall growth characters and physiological adaptations in 'Hom Nil' grown under water deficit condition were retained by AMF inoculation, resulting in enhanced yield attributes and anthocyanin fortification in rice grain.

16.
Int J Phytoremediation ; 20(5): 483-489, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29020458

ABSTRACT

Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6 weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500 mg kg-1, supplied as lead nitrate. After 4 weeks, root and shoot concentrations reached 1652 and 502 mg Pb kg-1 DW, while after 6 weeks they increased up to 3091 and 527 mg Pb kg-1 DW, respectively, at highest Pb concentration. As compared to the 4 week experiments, the plant growth and biomass yield were higher after 6 weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6 weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes.


Subject(s)
Brassicaceae , Soil Pollutants/analysis , Biodegradation, Environmental , Lead , Plant Roots/chemistry , Soil
17.
Ecotoxicol Environ Saf ; 135: 209-215, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27744137

ABSTRACT

The potential of a wild, unpalatable plant Coronopus didymus was investigated for the first time in terms of its capability to tolerate and accumulate cadmium (Cd) for phytoremediation purposes. A screenhouse experiment for 6 weeks was conducted to evaluate the effect of Cd from 100 to 400mgkg-1 on growth, biomass, photosynthetic apparatus, Cd uptake and accumulation in C. didymus plants. Application of Cd facilitates the growth of the plants whereas at higher levels a slight reduction was noticed. The concentration of Cd in roots and shoots reached a maximum of 867.2 and 864.5mgkg-1 DW respectively, at 400mgkg-1Cd treatment. Cd exposure increased the generation of superoxide anion (O2•-), H2O2 content, MDA level and antioxidative response (SOD, CAT and POD) in roots and shoots of C. didymus. However, a slight decline in SOD and CAT activities were noticed in roots at highest Cd treatment (400mgkg-1). The bioconcentration (BCF) values for all the concentrations were ˃1 and the translocation factor (TF) values were ˂ 1 at lower level but reached 1 at highest Cd concentration. Thus, C. didymus satisfies the conditions required for hyperaccumulator plants and may be practically employed to alleviate Cd from contaminated soils.


Subject(s)
Biodegradation, Environmental , Brassicaceae/metabolism , Cadmium/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Soil Pollutants/metabolism , Antioxidants , Biomass , Brassicaceae/drug effects , Brassicaceae/growth & development , Cadmium/administration & dosage , Cadmium/toxicity , Catalase/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Peroxidase/metabolism , Photosynthesis/drug effects , Superoxide Dismutase/metabolism , Superoxides/metabolism
18.
Pestic Biochem Physiol ; 118: 64-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25752432

ABSTRACT

Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100-1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery.


Subject(s)
Avena/drug effects , Eugenol/toxicity , Herbicides/toxicity , Oxidative Stress/drug effects , Plant Roots/growth & development , Reactive Oxygen Species/metabolism , Avena/enzymology , Avena/growth & development , Avena/metabolism , Glutathione Reductase/metabolism , Malondialdehyde/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Superoxide Dismutase/metabolism
19.
Bull Environ Contam Toxicol ; 95(2): 246-53, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26048438

ABSTRACT

The present study investigated the effect of lead (0, 16, 40 and 80 mg L(-1) Pb2+) exposure for 3, 12 and 24 h on root biochemistry in hydroponically grown Zea mays (maize). Pb2+ exposure (80 mg L(-1)) enhanced malondialdehyde content (239%-427%), reactive carbonyl groups (425%-512%) and H2O2 (129%-294%) accumulation during 3-24 h of treatment, thereby indicating cellular peroxidation and oxidative damage. The quantitative estimations were in accordance with in situ detection of ROS generation (using 2',7'-dichlorodihydrofluorescein diacetate dye) and H2O2 accumulation. Pb2+ treatment significantly reduced ascorbate and glutathione content during 3-24 h of exposure. On the contrary, levels of non-protein thiols were enhanced by 3-11.8 time over control in response to 16-80 mg L(-1) Pb2+ treatment, after 24 h. A dose-dependent induction in ascorbate peroxidase and lipoxygenase enzyme activity was observed in Z. mays roots. The activities of ascorbate-recycling enzymes (dehydroascorbate reductase and monodehydroascorbate reductase) were significantly increased in relation to concentration and duration of Pb2+ treatment. The study concludes that Pb2+-exposure induces ROS-mediated oxidative damage during early period of exposure despite the upregulation of enzymes of ascorbate-glutathione cycle.


Subject(s)
Lead/pharmacology , Zea mays/drug effects , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Lipoxygenase/metabolism , Malondialdehyde/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxidative Stress/drug effects , Oxidoreductases/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Zea mays/metabolism
20.
Ecotoxicology ; 23(7): 1292-304, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25023386

ABSTRACT

Plant responses to abiotic stress significantly affect the development of cells, tissues and organs. However, no studies correlating Pb-induced mitotic inhibition and DNA damage and the alterations in redox homeostasis during root division per se were found in the literature. Therefore, an experiment was conducted to evaluate the impact of Pb on mitotic activity and the associated changes in the oxidative metabolism in onion roots. The cytotoxic effect of Pb on cell division was assessed in the root meristems of Allium cepa (onion). The mitotic index (MI) was calculated and chromosomal abnormalities were sought. Pb-treatment induced a dose-dependent decrease in MI in the onion root tips and caused mitotic abnormalities such as distorted metaphase, fragments, sticky chromosomes, laggards, vagrant chromosomes and bridges. Single Cell Gel Electrophoresis was also performed to evaluate Pb induced genotoxicity. It was accompanied by altered oxidative metabolism in the onion root tips suggesting the interference of Pb with the redox homeostasis during cell division. There was a higher accumulation of malondialdehyde, conjugated dienes and hydrogen peroxide, and a significant increase in the activities of superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases in Pb-treated onion roots, whereas catalases activity exhibited a decreasing pattern upon Pb exposure. The study concludes that Pb-induced cytotoxicity and genotoxicity in the onion roots is mediated through ROS and is also tightly linked to the cell cycle. The exposure to higher concentrations arrested cell cycle leading to cell death, whereas different repair responses are generated at lower concentrations, thereby allowing the cell to complete the cell cycle.


Subject(s)
DNA Damage , Lead/toxicity , Mitotic Index , Onions/drug effects , Plant Roots/drug effects , Cell Division/drug effects , Chromosome Aberrations/chemically induced , Mutagenicity Tests , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL