Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730852

ABSTRACT

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Subject(s)
Cells/metabolism , Energy Metabolism , Adaptation, Physiological/radiation effects , Adenosine Triphosphate/metabolism , Benzoquinones/metabolism , Cell Membrane/metabolism , Cell Membrane/radiation effects , Cells/radiation effects , Chromatophores/metabolism , Cytochromes c2/metabolism , Diffusion , Electron Transport/radiation effects , Energy Metabolism/radiation effects , Environment , Hydrogen Bonding , Kinetics , Light , Molecular Dynamics Simulation , Phenotype , Proteins/metabolism , Rhodobacter sphaeroides/physiology , Rhodobacter sphaeroides/radiation effects , Static Electricity , Stress, Physiological/radiation effects , Temperature
2.
J Am Chem Soc ; 146(29): 20019-20032, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38991108

ABSTRACT

Small, diffusible redox proteins play an essential role in electron transfer (ET) in respiration and photosynthesis, sustaining life on Earth by shuttling electrons between membrane-bound complexes via finely tuned and reversible interactions. Ensemble kinetic studies show transient ET complexes form in two distinct stages: an "encounter" complex largely mediated by electrostatic interactions, which subsequently, through subtle reorganization of the binding interface, forms a "productive" ET complex stabilized by additional hydrophobic interactions around the redox-active cofactors. Here, using single-molecule force spectroscopy (SMFS) we dissected the transient ET complexes formed between the photosynthetic reaction center-light harvesting complex 1 (RC-LH1) of Rhodobacter sphaeroides and its native electron donor cytochrome c2 (cyt c2). Importantly, SMFS resolves the distribution of interaction forces into low (∼150 pN) and high (∼330 pN) components, with the former more susceptible to salt concentration and to alteration of key charged residues on the RC. Thus, the low force component is suggested to reflect the contribution of electrostatic interactions in forming the initial encounter complex, whereas the high force component reflects the additional stabilization provided by hydrophobic interactions to the productive ET complex. Employing molecular dynamics simulations, we resolve five intermediate states that comprise the encounter, productive ET and leaving complexes, predicting a weak interaction between cyt c2 and the LH1 ring near the RC-L subunit that could lie along the exit path for oxidized cyt c2. The multimodal nature of the interactions of ET complexes captured here may have wider implications for ET in all domains of life.


Subject(s)
Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolism , Electron Transport , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Cytochromes c2/chemistry , Cytochromes c2/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism
3.
FASEB J ; 36(7): e22378, 2022 07.
Article in English | MEDLINE | ID: mdl-35639414

ABSTRACT

Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein-protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co-elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic-Diffuse B-cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.


Subject(s)
Glioblastoma , Rho Guanine Nucleotide Exchange Factors , Glioblastoma/genetics , Guanine Nucleotide Exchange Factors , Humans , Proteins , Rho Guanine Nucleotide Exchange Factors/genetics
4.
J Chem Inf Model ; 63(18): 5834-5846, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37661856

ABSTRACT

Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.


Subject(s)
Artificial Intelligence , Molecular Dynamics Simulation , Cryoelectron Microscopy , Microscopy, Electron , Adenylate Kinase
5.
Biochemistry ; 61(5): 385-397, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35025510

ABSTRACT

Cytochrome c2 (cyt. c2) is a major element in electron transfer between redox proteins in bioenergetic membranes. While the interaction between cyt. c2 and anionic lipids abundant in bioenergetic membranes has been reported, their effect on the shuttling activity of cyt. c2 remains elusive. Here, the effect of anionic lipids on the interaction and binding of cyt. c2 to the cytochrome bc1 complex (bc1) is investigated using a combination of molecular dynamics (MD) and Brownian dynamics (BD) simulations. MD is used to generate thermally accessible conformations of cyt. c2 and membrane-embedded bc1, which were subsequently used in multireplica BD simulations of diffusion of cyt. c2 from solution to bc1, in the presence of various lipids. We show that, counterintuitively, anionic lipids facilitate association of cyt. c2 with bc1 by localizing its diffusion to the membrane surface. The observed lipid-mediated bc1 association is further enhanced by the oxidized state of cyt. c2, in line with its physiological function. This lipid-mediated enhancement is salinity-dependent, and anionic lipids can disrupt cyt. c2-bc1 interaction at nonphysiological salt levels. Our data highlight the importance of the redox state of cyt. c2, the lipid composition of the chromatophore membrane, and the salinity of the chromatophore in regulating the efficiency of the electron shuttling process mediated by cyt. c2. The conclusions can be extrapolated to mitochondrial systems and processes, or any bioenergetic membrane, given the structural similarity between cyt. c2 and bc1 and their mitochondrial counterparts.


Subject(s)
Cytochromes c , Lipids , Electron Transport , Electron Transport Complex III , Molecular Conformation , Oxidation-Reduction
6.
Biochem Soc Trans ; 50(1): 569-581, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35212361

ABSTRACT

Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed.


Subject(s)
Algorithms , Molecular Dynamics Simulation , Cryoelectron Microscopy/methods , Macromolecular Substances , Single Molecule Imaging
7.
Proc Natl Acad Sci U S A ; 115(38): 9391-9396, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29735677

ABSTRACT

The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.


Subject(s)
Biophysical Phenomena , Models, Theoretical , Motion , Thermodynamics , Algorithms , Catenanes/chemistry , Diffusion , Electrochemistry , Kinetics , Molecular Dynamics Simulation , Rotaxanes/chemistry
8.
J Am Chem Soc ; 142(20): 9220-9230, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32347721

ABSTRACT

The mitochondrial respiratory chain, formed by five protein complexes, utilizes energy from catabolic processes to synthesize ATP. Complex I, the first and the largest protein complex of the chain, harvests electrons from NADH to reduce quinone, while pumping protons across the mitochondrial membrane. Detailed knowledge of the working principle of such coupled charge-transfer processes remains, however, fragmentary due to bottlenecks in understanding redox-driven conformational transitions and their interplay with the hydrated proton pathways. Complex I from Thermus thermophilus encases 16 subunits with nine iron-sulfur clusters, reduced by electrons from NADH. Here, employing the latest crystal structure of T. thermophilus complex I, we have used microsecond-scale molecular dynamics simulations to study the chemo-mechanical coupling between redox changes of the iron-sulfur clusters and conformational transitions across complex I. First, we identify the redox switches within complex I, which allosterically couple the dynamics of the quinone binding pocket to the site of NADH reduction. Second, our free-energy calculations reveal that the affinity of the quinone, specifically menaquinone, for the binding-site is higher than that of its reduced, menaquinol form-a design essential for menaquinol release. Remarkably, the barriers to diffusive menaquinone dynamics are lesser than that of the more ubiquitous ubiquinone, and the naphthoquinone headgroup of the former furnishes stronger binding interactions with the pocket, favoring menaquinone for charge transport in T. thermophilus. Our computations are consistent with experimentally validated mutations and hierarchize the key residues into three functional classes, identifying new mutation targets. Third, long-range hydrogen-bond networks connecting the quinone-binding site to the transmembrane subunits are found to be responsible for proton pumping. Put together, the simulations reveal the molecular design principles linking redox reactions to quinone turnover to proton translocation in complex I.


Subject(s)
Electron Transport Complex I/metabolism , Thermus thermophilus/chemistry , Electron Transport Complex I/chemistry , Models, Molecular , Thermus thermophilus/metabolism , Ubiquinone/chemistry , Ubiquinone/metabolism
9.
J Chem Inf Model ; 60(5): 2591-2604, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32207947

ABSTRACT

Despite significant advances in resolution, the potential for cryo-electron microscopy (EM) to be used in determining the structures of protein-drug complexes remains unrealized. Determination of accurate structures and coordination of bound ligands necessitates simultaneous fitting of the models into the density envelopes, exhaustive sampling of the ligand geometries, and, most importantly, concomitant rearrangements in the side chains to optimize the binding energy changes. In this article, we present a flexible-fitting pipeline where molecular dynamics flexible fitting (MDFF) is used to refine structures of protein-ligand complexes from 3 to 5 Å electron density data. Enhanced sampling is employed to explore the binding pocket rearrangements. To provide a model that can accurately describe the conformational dynamics of the chemically diverse set of small-molecule drugs inside MDFF, we use QM/MM and neural-network potential (NNP)/MM models of protein-ligand complexes, where the ligand is represented using the QM or NNP model, and the protein is represented using established molecular mechanical force fields (e.g., CHARMM). This pipeline offers structures commensurate to or better than recently submitted high-resolution cryo-EM or X-ray models, even when given medium to low-resolution data as input. The use of the NNPs makes the algorithm more robust to the choice of search models, offering a radius of convergence of 6.5 Å for ligand structure determination. The quality of the predicted structures was also judged by density functional theory calculations of ligand strain energy. This strain potential energy is found to systematically decrease with better fitting to density and improved ligand coordination, indicating correct binding interactions. A computationally inexpensive protocol for computing strain energy is reported as part of the model analysis protocol that monitors both the ligand fit as well as model quality.


Subject(s)
Molecular Dynamics Simulation , Neural Networks, Computer , Cryoelectron Microscopy , Microscopy, Electron , Molecular Conformation , Protein Conformation
10.
J Chem Phys ; 153(21): 214102, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33291927

ABSTRACT

Driving molecular dynamics simulations with data-guided collective variables offer a promising strategy to recover thermodynamic information from structure-centric experiments. Here, the three-dimensional electron density of a protein, as it would be determined by cryo-EM or x-ray crystallography, is used to achieve simultaneously free-energy costs of conformational transitions and refined atomic structures. Unlike previous density-driven molecular dynamics methodologies that determine only the best map-model fits, our work employs the recently developed Multi-Map methodology to monitor concerted movements within equilibrium, non-equilibrium, and enhanced sampling simulations. Construction of all-atom ensembles along the chosen values of the Multi-Map variable enables simultaneous estimation of average properties, as well as real-space refinement of the structures contributing to such averages. Using three proteins of increasing size, we demonstrate that biased simulation along the reaction coordinates derived from electron densities can capture conformational transitions between known intermediates. The simulated pathways appear reversible with minimal hysteresis and require only low-resolution density information to guide the transition. The induced transitions also produce estimates for free energy differences that can be directly compared to experimental observables and population distributions. The refined model quality is superior compared to those found in the Protein Data Bank. We find that the best quantitative agreement with experimental free-energy differences is obtained using medium resolution density information coupled to comparatively large structural transitions. Practical considerations for probing the transitions between multiple intermediate density states are also discussed.


Subject(s)
Cryoelectron Microscopy/methods , Models, Chemical , Proteins/chemistry , Adenylate Kinase/chemistry , Aldehyde Oxidoreductases/chemistry , Lipoproteins/chemistry , Molecular Dynamics Simulation , Multienzyme Complexes/chemistry , Protein Conformation , Thermodynamics
11.
J Chem Phys ; 153(4): 044130, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752662

ABSTRACT

NAMDis a molecular dynamics program designed for high-performance simulations of very large biological objects on CPU- and GPU-based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range electrostatics; controlling the temperature, pressure, and pH; applying external potentials on tailored grids; leveraging massively parallel resources in multiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanical descriptions. We detail the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchemical or geometrical transformations and outline their applicability to specific problems. Last, we discuss the roadmap for the development of NAMD and our current efforts toward achieving optimal performance on GPU-based architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run, and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.

12.
Proc Natl Acad Sci U S A ; 113(37): 10310-5, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27573840

ABSTRACT

Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.


Subject(s)
Cation Transport Proteins/chemistry , Iron/chemistry , Manganese/chemistry , Methionine/chemistry , Amino Acid Sequence/genetics , Biological Transport/genetics , Calcium/chemistry , Cation Transport Proteins/genetics , Cations, Divalent/chemistry , Cobalt/chemistry , Deinococcus/chemistry , Ion Transport/genetics , Methionine/genetics , Substrate Specificity
13.
Biophys J ; 122(14): E1-E2, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37419113
14.
J Struct Biol ; 204(2): 319-328, 2018 11.
Article in English | MEDLINE | ID: mdl-30092279

ABSTRACT

Accurate structure determination from electron density maps at 3-5 Šresolution necessitates a balance between extensive global and local sampling of atomistic models, yet with the stereochemical correctness of backbone and sidechain geometries. Molecular Dynamics Flexible Fitting (MDFF), particularly through a resolution-exchange scheme, ReMDFF, provides a robust way of achieving this balance for hybrid structure determination. Employing two high-resolution density maps, namely that of ß-galactosidase at 3.2 Šand TRPV1 at 3.4 Å, we showcase the quality of ReMDFF-generated models, comparing them against ones submitted by independent research groups for the 2015-2016 Cryo-EM Model Challenge. This comparison offers a clear evaluation of ReMDFF's strengths and shortcomings, and those of data-guided real-space refinements in general. ReMDFF results scored highly on the various metric for judging the quality-of-fit and quality-of-model. However, some systematic discrepancies are also noted employing a Molprobity analysis, that are reproducible across multiple competition entries. A space of key refinement parameters is explored within ReMDFF to observe their impact within the final model. Choice of force field parameters and initial model seem to have the most significant impact on ReMDFF model-quality. To this end, very recently developed CHARMM36m force field parameters provide now more refined ReMDFF models than the ones originally submitted to the Cryo-EM challenge. Finally, a set of good-practices is prescribed for the community to benefit from the MDFF developments.


Subject(s)
Cryoelectron Microscopy/methods , Molecular Dynamics Simulation , Protein Conformation
15.
J Am Chem Soc ; 139(1): 293-310, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27936329

ABSTRACT

ATP synthase is the most prominent bioenergetic macromolecular motor in all life forms, utilizing the proton gradient across the cell membrane to fuel the synthesis of ATP. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, the precise molecular mechanism whereby vacuolar (V-type) ATP synthase fulfills its biological function remains largely fragmentary. Recently, crystallographers provided the first high-resolution view of ATP activity in Enterococcus hirae V1-ATPase. Employing a combination of transition-path sampling and high-performance free-energy methods, the sequence of conformational transitions involved in a functional cycle accompanying ATP hydrolysis has been investigated in unprecedented detail over an aggregate simulation time of 65 µs. Our simulated pathways reveal that the chemical energy produced by ATP hydrolysis is harnessed via the concerted motion of the protein-protein interfaces in the V1-ring, and is nearly entirely consumed in the rotation of the central stalk. Surprisingly, in an ATPase devoid of a central stalk, the interfaces of this ring are perfectly designed for inducing ATP hydrolysis. However, in a complete V1-ATPase, the mechanical property of the central stalk is a key determinant of the rate of ATP turnover. The simulations further unveil a sequence of events, whereby unbinding of the hydrolysis product (ADP + Pi) is followed by ATP uptake, which, in turn, leads to the torque generation step and rotation of the center stalk. Molecular trajectories also bring to light multiple intermediates, two of which have been isolated in independent crystallography experiments.


Subject(s)
Adenosine Triphosphate/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/chemistry , Enterococcus hirae/enzymology , Hydrolysis , Models, Molecular , Protein Binding , Vacuolar Proton-Translocating ATPases/chemistry
16.
Methods ; 100: 50-60, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26804562

ABSTRACT

Molecular Dynamics Flexible Fitting (MDFF) is an established technique for fitting all-atom structures of molecules into corresponding cryo-electron microscopy (cryo-EM) densities. The practical application of MDFF is simple but requires a user to be aware of and take measures against a variety of possible challenges presented by each individual case. Some of these challenges arise from the complexity of a molecular structure or the limited quality of available structural models and densities to be interpreted, while others stem from the intricacies of MDFF itself. The current article serves as an overview of the strategies that have been developed since MDFF's inception to overcome common challenges and successfully perform MDFF simulations.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Algorithms , Imaging, Three-Dimensional , Protein Conformation , User-Computer Interface
17.
J Am Chem Soc ; 138(37): 12077-89, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27508459

ABSTRACT

Small diffusible redox proteins facilitate electron transfer in respiration and photosynthesis by alternately binding to their redox partners and integral membrane proteins and exchanging electrons. Diffusive search, recognition, binding, and unbinding of these proteins often amount to kinetic bottlenecks in cellular energy conversion, but despite the availability of structures and intense study, the physical mechanisms controlling redox partner interactions remain largely unknown. The present molecular dynamics study provides an all-atom description of the cytochrome c2-docked bc1 complex in Rhodobacter sphaeroides in terms of an ensemble of favorable docking conformations and reveals an intricate series of conformational changes that allow cytochrome c2 to recognize the bc1 complex and bind or unbind in a redox state-dependent manner. In particular, the role of electron transfer in triggering a molecular switch and in altering water-mediated interface mobility, thereby strengthening and weakening complex formation, is described. The results resolve long-standing discrepancies between structural and functional data.


Subject(s)
Cytochromes c2/chemistry , Rhodobacter sphaeroides/enzymology , Binding Sites , Computer Simulation , Electron Transport/physiology , Models, Chemical , Models, Molecular , Protein Binding , Protein Conformation , Static Electricity
18.
J Am Chem Soc ; 138(14): 4843-4851, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27014837

ABSTRACT

Shape-persistent macrocycles are attractive functional targets for synthesis, molecular recognition, and hierarchical self-assembly. Such macrocycles are noncollapsible and geometrically well-defined, and they are traditionally characterized by having repeat units and low conformational flexibility. Here, we find it necessary to refine these ideas in the face of highly flexible yet shape-persistent macrocycles. A molecule is shape-persistent if it has a small change in shape when perturbed by external stimuli (e.g., heat, light, and redox chemistry). In support of this idea, we provide the first examination of the relationships between a macrocycle's shape persistence, its conformational space, and the resulting functions. We do this with a star-shaped macrocycle called cyanostar that is flexible as well as being shape-persistent. We employed molecular dynamics (MD), density functional theory (DFT), and NMR experiments. Considering a thermal bath as a stimulus, we found a single macrocycle has 332 accessible conformers with olefins undergoing rapid interconversion by up-down and in-out motions on short time scales (0.2 ns). These many interconverting conformations classify single cyanostars as flexible. To determine and confirm that cyanostars are shape-persistent, we show that they have a high 87% shape similarity across these conformations. To further test the idea, we use the binding of diglyme to the single macrocycle as guest-induced stimulation. This guest has almost no effect on the conformational space. However, formation of a 2:1 sandwich complex involving two macrocycles enhances rigidity and dramatically shifts the conformer distribution toward perfect bowls. Overall, the present study expands the scope of shape-persistent macrocycles to include flexible macrocycles if, and only if, their conformers have similar shapes.


Subject(s)
Macrocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Conformation , Molecular Dynamics Simulation , Thermodynamics
19.
Parallel Comput ; 55: 17-27, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27274603

ABSTRACT

The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.

20.
J Am Chem Soc ; 137(27): 8810-8, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26121416

ABSTRACT

Crystal structure determination has long provided insight into structure and bonding of small molecules. When those same small molecules are designed to come together in multimolecular assemblies, such as in coordination cages, supramolecular architectures and organic-based frameworks, their crystallographic characteristics closely resemble biological macromolecules. This resemblance suggests that biomacromolecular refinement approaches be used for structure determination of abiological molecular complexes that arise in an aggregate state. Following this suggestion we investigated the crystal structure of a pentagonal macrocycle, cyanostar, by means of biological structure analysis methods and compared results to traditional small molecule methods. Cyanostar presents difficulties seen in supramolecular crystallography including whole molecule disorder and highly flexible solvent molecules sitting in macrocyclic and intermolecule void spaces. We used the force-field assisted refinement method, molecular dynamics flexible fitting algorithm for X-ray crystallography (xMDFF), along with tools from the macromolecular structure determination suite PHENIX. We found that a standard implementation of PHENIX, namely one without xMDFF, either fails to produce a solution by molecular replacement alone or produces an inaccurate structure when using generic geometry restraints, even at a very high diffraction data resolution of 0.84 Å. The problems disappear when taking advantage of xMDFF, which applies an optimized force field to realign molecular models during phasing by providing accurate restraints. The structure determination for this model system shows excellent agreement with the small-molecule methods. Therefore, the joint xMDFF-PHENIX refinement protocol provides a new strategy that uses macromolecule methods for structure determination of small molecules and their assemblies.


Subject(s)
Macrocyclic Compounds/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL