Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931245

ABSTRACT

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Subject(s)
Neural Stem Cells , Mice , Animals , Humans , Neural Stem Cells/metabolism , Neurons , Cell Differentiation/physiology , Neuroglia/metabolism , Brain , Astrocytes
2.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30241615

ABSTRACT

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Subject(s)
Bone Development/physiology , Bone and Bones/cytology , Hematopoietic Stem Cells/cytology , Animals , Bone and Bones/metabolism , Cartilage/cytology , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis/methods , Stem Cells/cytology , Stromal Cells/cytology , Transcriptome/genetics
3.
Cell ; 166(2): 451-467, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27419872

ABSTRACT

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.


Subject(s)
Mesoderm/cytology , Signal Transduction , Bone Morphogenetic Proteins/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Heart/growth & development , Homeodomain Proteins/metabolism , Humans , Mesoderm/metabolism , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Single-Cell Analysis , Somites/metabolism , Stem Cells , Tumor Suppressor Proteins/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/metabolism
4.
Immunity ; 54(3): 586-602.e8, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691136

ABSTRACT

To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRß chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Epitope Mapping/methods , Epitopes, T-Lymphocyte/genetics , Lung Neoplasms/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/immunology , Algorithms , Antigen Presentation , Antigens, Neoplasm/metabolism , Cells, Cultured , Cross Reactions , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Humans , Protein Binding , T-Cell Antigen Receptor Specificity
5.
Cell ; 160(1-2): 285-98, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25594184

ABSTRACT

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.


Subject(s)
Bone and Bones/cytology , Mesenchymal Stem Cells/cytology , Animals , Bone Morphogenetic Proteins/metabolism , Cartilage/cytology , Cell Lineage , Crosses, Genetic , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction
6.
Cell ; 160(6): 1196-208, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25728669

ABSTRACT

Most cell-surface receptors for cytokines and growth factors signal as dimers, but it is unclear whether remodeling receptor dimer topology is a viable strategy to "tune" signaling output. We utilized diabodies (DA) as surrogate ligands in a prototypical dimeric receptor-ligand system, the cytokine Erythropoietin (EPO) and its receptor (EpoR), to dimerize EpoR ectodomains in non-native architectures. Diabody-induced signaling amplitudes varied from full to minimal agonism, and structures of these DA/EpoR complexes differed in EpoR dimer orientation and proximity. Diabodies also elicited biased or differential activation of signaling pathways and gene expression profiles compared to EPO. Non-signaling diabodies inhibited proliferation of erythroid precursors from patients with a myeloproliferative neoplasm due to a constitutively active JAK2V617F mutation. Thus, intracellular oncogenic mutations causing ligand-independent receptor activation can be counteracted by extracellular ligands that re-orient receptors into inactive dimer topologies. This approach has broad applications for tuning signaling output for many dimeric receptor systems.


Subject(s)
Receptors, Erythropoietin/chemistry , Receptors, Erythropoietin/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Cell Line , Crystallography, X-Ray , Dimerization , Erythropoietin/metabolism , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Point Mutation , Protein Engineering , Receptors, Erythropoietin/agonists , Receptors, Erythropoietin/antagonists & inhibitors , Sequence Alignment
7.
Nature ; 619(7971): 860-867, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468622

ABSTRACT

Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.


Subject(s)
Adenocarcinoma of Lung , Cellular Reprogramming , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Stem Cells , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cellular Reprogramming/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Stem Cells/metabolism , Stem Cells/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism
8.
Nature ; 597(7875): 256-262, 2021 09.
Article in English | MEDLINE | ID: mdl-34381212

ABSTRACT

Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.


Subject(s)
Aging/pathology , Bone and Bones/pathology , Cellular Senescence , Inflammation/pathology , Stem Cell Niche , Stem Cells/pathology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , Cell Lineage , Female , Fracture Healing , Hematopoiesis , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Myeloid Cells/cytology , Osteoclasts/cytology , Rejuvenation
9.
Proc Natl Acad Sci U S A ; 121(11): e2308401121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38446849

ABSTRACT

Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.


Subject(s)
Genes, Homeobox , Neurons , Humans , Chromatin , Neurotransmitter Agents , Prosencephalon
10.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805281

ABSTRACT

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Subject(s)
Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , RNA, Long Noncoding , T-Lymphocytes, Regulatory , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Cell Differentiation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL