Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Environ Manage ; 212: 266-277, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29448181

ABSTRACT

When beach water monitoring programs identify poor water quality, the causes are frequently unknown. We hypothesize that management policies play an important role in the frequency of fecal indicator bacteria (FIB) exceedances (enterococci and fecal coliform) at recreational beaches. To test this hypothesis we implemented an innovative approach utilizing large amounts of monitoring data (n > 150,000 measurements per FIB) to determine associations between the frequency of contaminant exceedances and beach management practices. The large FIB database was augmented with results from a survey designed to assess management policies for 316 beaches throughout the state of Florida. The FIB and survey data were analyzed using t-tests, ANOVA, factor analysis, and linear regression. Results show that beach geomorphology (beach type) was highly associated with exceedance of regulatory standards. Low enterococci exceedances were associated with open coast beaches (n = 211) that have sparse human densities, no homeless populations, low densities of dogs and birds, bird management policies, low densities of seaweed, beach renourishment, charge access fees, employ lifeguards, without nearby marinas, and those that manage storm water. Factor analysis and a linear regression confirmed beach type as the predominant factor with secondary influences from grooming activities (including seaweed densities and beach renourishment) and beach access (including charging fees, employing lifeguards, and without nearby marinas). Our results were observable primarily because of the very large public FIB database available for analyses; similar approaches can be adopted at other beaches. The findings of this research have important policy implications because the selected beach management practices that were associated with low levels of FIB can be implemented in other parts of the US and around the world to improve recreational beach water quality.


Subject(s)
Bathing Beaches , Recreation , Water Quality , Environmental Monitoring , Feces , Florida , Humans , Water Microbiology
2.
Appl Environ Microbiol ; 83(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28341673

ABSTRACT

Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial.IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their genetic material may influence the microbiomes of coral reef communities and coastal receiving waters. Runoff delivered through inlet discharges impacted coral microbial communities, but impacts from oceanic outfalls carrying treated wastewater were greater. Geographic differences in the degree of impact suggest that coral microbiomes may be influenced by the microbiological quality of treated wastewater.


Subject(s)
Anthozoa/microbiology , Bacteria/isolation & purification , Fungi/isolation & purification , Microbiota , Seawater/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Coral Reefs , Florida , Fungi/classification , Fungi/genetics , Wastewater/chemistry , Wastewater/microbiology
3.
Appl Environ Microbiol ; 80(5): 1679-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24375136

ABSTRACT

Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.


Subject(s)
Anthozoa/microbiology , Bacteriological Techniques/methods , Porifera/microbiology , Real-Time Polymerase Chain Reaction/methods , Serratia marcescens/isolation & purification , Sewage/microbiology , Water Microbiology , Animals , Florida , Humans , Sensitivity and Specificity , Serratia marcescens/classification , Serratia marcescens/genetics
4.
Microb Ecol ; 65(4): 1024-38, 2013 May.
Article in English | MEDLINE | ID: mdl-23508733

ABSTRACT

In May of 2011, a live mass stranding of 26 short-finned pilot whales (Globicephala macrorhynchus) occurred in the lower Florida Keys. Five surviving whales were transferred from the original stranding site to a nearby marine mammal rehabilitation facility where they were constantly attended to by a team of volunteers. Bacteria cultured during the routine clinical care of the whales and necropsy of a deceased whale included methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA). In order to investigate potential sources or reservoirs of MSSA and MRSA, samples were obtained from human volunteers, whales, seawater, and sand from multiple sites at the facility, nearby recreational beaches, and a canal. Samples were collected on 3 days. The second collection day was 2 weeks after the first, and the third collection day was 2 months after the last animal was removed from the facility. MRSA and MSSA were isolated on each day from the facility when animals and volunteers were present. MSSA was found at an adjacent beach on all three collection days. Isolates were characterized by utilizing a combination of quantitative real-time PCR to determine the presence of mecA and genes associated with virulence, staphylococcal protein A typing, staphylococcal cassette chromosome mec typing, multilocus sequence typing, and pulsed field gel electrophoresis (PFGE). Using these methods, clonally related MRSA were isolated from multiple environmental locations as well as from humans and animals. Non-identical but genetically similar MSSA and MRSA were also identified from distinct sources within this sample pool. PFGE indicated that the majority of MRSA isolates were clonally related to the prototype human strain USA300. These studies support the notion that S. aureus may be shed into an environment by humans or pilot whales and subsequently colonize or infect exposed new hosts.


Subject(s)
Cetacea/microbiology , Fin Whale/microbiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Florida , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Volunteers
5.
Microb Ecol ; 65(4): 1039-51, 2013 May.
Article in English | MEDLINE | ID: mdl-23553001

ABSTRACT

Reports of Staphylococcus aureus including methicillin-resistant S. aureus (MRSA) detected in marine environments have occurred since the early 1990 s. This investigation sought to isolate and characterize S. aureus from marine waters and sand at a subtropical recreational beach, with and without bathers present, in order to investigate possible sources and to identify the risks to bathers of exposure to these organisms. During 40 days over 17 months, 1,001 water and 36 intertidal sand samples were collected by either bathers or investigators at a subtropical recreational beach. Methicillin-sensitive S. aureus (MSSA) and MRSA were isolated and identified using selective growth media and an organism-specific molecular marker. Antimicrobial susceptibility, staphylococcal cassette chromosome mec (SCCmec) type, pulsed-field gel electrophoresis (PFGE) pattern, multi-locus sequence type (MLST), and staphylococcal protein A (spa) type were characterized for all MRSA. S. aureus was isolated from 248 (37 %) bather nearby water samples at a concentration range of <2-780 colony forming units per ml, 102 (31 %) ambient water samples at a concentration range of <2-260 colony forming units per ml, and 9 (25 %) sand samples. Within the sand environment, S. aureus was isolated more often from above the intertidal zone than from intermittently wet or inundated sand. A total of 1334 MSSA were isolated from 37 sampling days and 22 MRSA were isolated from ten sampling days. Seventeen of the 22 MRSA were identified by PFGE as the community-associated MRSA USA300. MRSA isolates were all SCCmec type IVa, encompassed five spa types (t008, t064, t622, t688, and t723), two MLST types (ST8 and ST5), and 21 of 22 isolates carried the genes for Panton-Valentine leukocidin. There was a correlation (r = 0.45; p = 0.05) between the daily average number of bathers and S. aureus in the water; however, no association between exposure to S. aureus in these waters and reported illness was found. This report supports the concept that humans are a potential direct source for S. aureus in marine waters.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/isolation & purification , Seawater/microbiology , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Drug Resistance, Bacterial , Exotoxins/genetics , Exotoxins/metabolism , Humans , Leukocidins/genetics , Leukocidins/metabolism , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Public Facilities
6.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Article in English | MEDLINE | ID: mdl-37019824

ABSTRACT

The water surface microlayer (SML) serves as a boundary through which microbes can be exchanged. To evaluate exchanges of microbes, this study compared microbial communities within different reservoirs, with an emphasis on the water SML and aerosols. Additionally, the microbial communities during a sewage spill and perigean tides were evaluated and the results were compared to times without these events. Results show that during perigean tides and during the sewage spill, levels of culturable bacteria were highest and showed an increase via sequencing in potential pathogenic bacteria (Corynebacterium and Vibrio, which increased from 3.5%-1800% depending on sample type). In the aerosol samples, Corynebacterium (average of 2.0%), Vibrio (1.6%), and Staphylococcus (10%), were the most abundant genera. Aerosolization factors, which were used to examine the transfer of the microbes, were high for these three genera. Measurements of general marine bacteria (GMB) by culture showed a weak but significant correlation between culturable GMB in aerosol samples versus in water and in the SML. More research is needed to evaluate the exchange of pathogens between the SML and air, given the increase in potentially pathogenic microbes within the SML during rare events and evidence that suggests that microbes maintain viability during transfers across reservoirs.


Subject(s)
Aerosols , Air Microbiology , Bathing Beaches , Seawater , Water Microbiology , Aerosols/analysis , Bacteria/isolation & purification , Microbiota , Sand/microbiology , Seawater/microbiology , Sewage/microbiology , Water/analysis
7.
Sci Total Environ ; 851(Pt 2): 158349, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36041612

ABSTRACT

Studies are limited that evaluate seaweed as a source of bacteria to beach waters. The objective of the current study was to evaluate whether seaweed, along with humans and other animals, could be the cause of beach advisories due to elevated levels of enterococci. The monitoring period occurred a year prior to and through the COVID-19 beach shutdown period, which provided a unique opportunity to evaluate bacteria levels during prolonged periods without recreational activity. Samples of water, sediment, and seaweed were measured for enterococci by culture and qPCR, in addition to microbial source tracking by qPCR of fecal bacteria markers from humans, dogs, and birds. During periods of elevated enterococci levels in water, these analyses were supplemented by chemical source tracking of human-associated excretion markers (caffeine, sucralose, acetaminophen, ibuprofen, and naproxen). Results show that enterococci with elevated levels of human fecal markers persist in the seaweed and sediment and are the likely contributor to elevated levels of bacteria to the nearshore waters. During the shutdown period the elevated levels of enterococci in the sediment were isolated to the seaweed stranding areas. During periods when the beaches were open, enterococci were distributed more uniformly in sediment across the supratidal and intertidal zones. It is hypothesized from this study that human foot traffic may be responsible for the spread of enterococci throughout these areas. Overall, this study found high levels of enterococci in decomposing seaweed supporting the hypothesis that decomposing seaweed provides an additional substrate for enterococci to grow.


Subject(s)
COVID-19 , Seaweed , Humans , Dogs , Animals , Bathing Beaches , Water Microbiology , Ibuprofen , Caffeine , Naproxen , Acetaminophen , Environmental Monitoring/methods , Feces/microbiology , Bacteria , Enterococcus , Water
8.
BMC Microbiol ; 11(1): 5, 2011 Jan 06.
Article in English | MEDLINE | ID: mdl-21211014

ABSTRACT

BACKGROUND: Staphylococcus aureus including methicillin resistant S. aureus, MRSA, are human colonizing bacteria that commonly cause opportunistic infections primarily involving the skin in otherwise healthy individuals. These infections have been linked to close contact and sharing of common facilities such as locker rooms, schools and prisons Waterborne exposure and transmission routes have not been traditionally associated with S. aureus infections. Coastal marine waters and beaches used for recreation are potential locations for the combination of high numbers of people with close contact and therefore could contribute to the exposure to and infection by these organisms. The primary aim of this study was to evaluate the amount and characteristics of the shedding of methicillin sensitive S. aureus, MSSA and MRSA by human bathers in marine waters. RESULTS: Nasal cultures were collected from bathers, and water samples were collected from two sets of pools designed to isolate and quantify MSSA and MRSA shed by adults and toddlers during exposure to marine water. A combination of selective growth media and biochemical and polymerase chain reaction analysis was used to identify and perform limited characterization of the S. aureus isolated from the water and the participants. Twelve of 15 MRSA isolates collected from the water had identical genetic characteristics as the organisms isolated from the participants exposed to that water while the remaining 3 MRSA were without matching nasal isolates from participants. The amount of S. aureus shed per person corresponded to 105 to 106 CFU per person per 15-minute bathing period, with 15 to 20% of this quantity testing positive for MRSA. CONCLUSIONS: This is the first report of a comparison of human colonizing organisms with bacteria from human exposed marine water attempting to confirm that participants shed their own colonizing MSSA and MRSA into their bathing milieu. These findings clearly demonstrate that adults and toddlers shed their colonizing organisms into marine waters and therefore can be sources of potentially pathogenic S. aureus and MRSA in recreational marine waters. Additional research is needed to evaluate recreational beaches and marine waters as potential exposure and transmission pathways for MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/isolation & purification , Seawater/microbiology , Staphylococcus aureus/isolation & purification , Water Microbiology , Adult , Child, Preschool , Female , Humans , Infant , Male , Nose/microbiology
9.
J Water Health ; 9(3): 443-57, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21976192

ABSTRACT

Studies evaluating the relationship between microbes and human health at non-point source beaches are necessary for establishing criteria which would protect public health while minimizing economic burdens. The objective of this study was to evaluate water quality and daily cumulative health effects (gastrointestinal, skin, and respiratory illnesses) for bathers at a non-point source subtropical marine recreational beach in order to better understand the inter-relationships between these factors and hence improve monitoring and pollution prevention techniques. Daily composite samples were collected, during the Oceans and Human Health Beach Exposure Assessment and Characterization Health Epidemiologic Study conducted in Miami (Florida, USA) at a non-point source beach, and analyzed for several pathogens, microbial source tracking markers, indicator microbes, and environmental parameters. Analysis demonstrated that rainfall and tide were more influential, when compared to other environmental factors and source tracking markers, in determining the presence of both indicator microbes and pathogens. Antecedent rainfall and F+ coliphage detection in water should be further assessed to confirm their possible association with skin and gastrointestinal (GI) illness outcomes, respectively. The results of this research illustrate the potential complexity of beach systems characterized by non-point sources, and how more novel and comprehensive approaches are needed to assess beach water quality for the purpose of protecting bather health.


Subject(s)
Bathing Beaches , Gastrointestinal Diseases/microbiology , Respiratory Tract Infections/microbiology , Seawater/microbiology , Water Microbiology , Coliphages/isolation & purification , Enterococcus/isolation & purification , Enterovirus/isolation & purification , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Epidemiological Monitoring , Florida/epidemiology , Gastrointestinal Diseases/epidemiology , Humans , Rain , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/transmission
10.
Sci Total Environ ; 793: 148641, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34328980

ABSTRACT

An increase in the number of advisories issued for recreational beaches across south Florida (due to the fecal indicator bacteria, enterococci) has been observed in recent years. To evaluate the possible reasons for this increase, we reviewed weekly monitoring data for 18 beaches in Miami-Dade County, Florida, for the years 2000-2019. Our objective was to evaluate this dataset for trends in enterococci levels and correlations with various factors that might have influenced enterococci levels at these beaches. For statistical analyses, we divided the 20-year period of record into 5-year increments (2000-2004, 2005-2009, 2010-2014, and 2015-2019). The Wilcoxon rank sum test was used to identify statistically significant differences between the geometric mean of different periods. When all 18 beaches were collectively considered, a significant increase (p = 0.03) in enterococci was observed during 2015-2019, compared to the prior 15-year period of record. To better understand the potential causes for this increase, correlations were evaluated with environmental parameters (rainfall, air temperature, and water temperature), global oceanic changes (sea level and Sargassum), community populations (county population estimates and beach visitation numbers), and wastewater infrastructure (sewage effluent flow rates to ocean outfalls and deep well injection). In relation to the enterococci geometric mean, the correlation with Sargassum was statistically significant at a 95% confidence interval (p = 0.035). Population (p = 0.078), air temperature (p = 0.092), and sea level (p = 0.098) were statistically significant at 90% confidence intervals. Rainfall, water temperature, beach visitation numbers, and sewage effluent flow rates via deep well injection had positive correlations but were not significant factors. Sewage effluent flow rates to ocean outfalls had a negative correlation.


Subject(s)
Bathing Beaches , Enterococcus , Environmental Monitoring , Feces , Seawater , Wastewater , Water Microbiology
11.
Environ Sci Technol ; 44(21): 8175-81, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20925349

ABSTRACT

The objectives of this work were to compare enterococci (ENT) measurements based on the membrane filter, ENT(MF) with alternatives that can provide faster results including alternative enterococci methods (e.g., chromogenic substrate (CS), and quantitative polymerase chain reaction (qPCR)), and results from regression models based upon environmental parameters that can be measured in real-time. ENT(MF) were also compared to source tracking markers (Staphylococcus aureus, Bacteroidales human and dog markers, and Catellicoccus gull marker) in an effort to interpret the variability of the signal. Results showed that concentrations of enterococci based upon MF (<2 to 3320 CFU/100 mL) were significantly different from the CS and qPCR methods (p < 0.01). The correlations between MF and CS (r = 0.58, p < 0.01) were stronger than between MF and qPCR (r ≤ 0.36, p < 0.01). Enterococci levels by MF, CS, and qPCR methods were positively correlated with turbidity and tidal height. Enterococci by MF and CS were also inversely correlated with solar radiation but enterococci by qPCR was not. The regression model based on environmental variables provided fair qualitative predictions of enterococci by MF in real-time, for daily geometric mean levels, but not for individual samples. Overall, ENT(MF) was not significantly correlated with source tracking markers with the exception of samples collected during one storm event. The inability of the regression model to predict ENT(MF) levels for individual samples is likely due to the different sources of ENT impacting the beach at any given time, making it particularly difficult to to predict short-term variability of ENT(MF) for environmental parameters.


Subject(s)
Bathing Beaches , Environmental Monitoring/methods , Sewage/analysis , Water Pollutants/analysis , Enterococcus/isolation & purification , Seawater/chemistry , Seawater/microbiology , Staphylococcus aureus/isolation & purification , Water Pollution/statistics & numerical data
12.
Phycologia ; 48(4): 249-257, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-20305733

ABSTRACT

Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor, as fragile dinoflagellates, such as Karenia brevis (Dinophyceae), survived electronic cell sorting to yield viable cells. The rate of successful isolation of large-scale (> 4 litres) cultures was higher for manual picking than for electronic cell sorting (2% vs 0.5%, respectively). However, manual picking of cells is more labor intensive and time consuming. Most manually isolated cells required repicking, as the cultures were determined not to be unialgal after a single round of isolation; whereas, no cultures obtained in this study from electronic single-cell sorting required resorting. A broad flow cytometric gating logic was employed to enhance species diversity. The percentages of unique genotypes produced by manual picking or electronic cell sorting were similar (57% vs 54%, respectively), and each approach produced a variety of dinoflagellate or raphidophyte genera. Alternatively, a highly restrictive gating logic was successfully used to target K. brevis from a natural bloom sample. Direct electronic single-cell sorting was more successful than utilizing a pre-enrichment sort followed by electronic single-cell sorting. The appropriate recovery medium may enhance the rate of successful isolations. Seventy percent of isolated cells were recovered in a new medium (RE) reported here, which was optimized for axenic dinoflagellate cultures. The greatest limiting factor to the throughput of electronic cell sorting is the need for manual postsort culture maintenance and assessment of the large number of isolated cells. However, when combined with newly developed automated methods for growth screening, electronic single-cell sorting has the potential to accelerate the discovery of new algal strains.

13.
Environ Health ; 7 Suppl 2: S3, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-19025674

ABSTRACT

Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.


Subject(s)
Ecosystem , Environmental Health , Shellfish/microbiology , Water Microbiology , Animals , Disease Reservoirs/microbiology , Environmental Monitoring/methods , Food Contamination , Great Lakes Region , Humans , Recreation , Seawater/microbiology , Sentinel Surveillance , Water Pollution
14.
Phytochemistry ; 66(15): 1767-80, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16051286

ABSTRACT

Karenia brevis is a toxic marine dinoflagellate endemic to the Gulf of Mexico. Blooms of this harmful alga cause fish kills, marine mammal mortalities and neurotoxic shellfish poisonings. These harmful effects are attributed to a suite of polyketide secondary metabolites known as the brevetoxins. The carbon framework of all polyketides is assembled by a polyketide synthase (PKS). Previously, PKS encoding genes were amplified from K. brevis culture and their similarity to a PKS gene from the closely related protist, Cryptosporidium parvum, suggested that these genes originate from the dinoflagellate. However, K. brevis has not been grown axenically. The associated bacteria might be the source of the toxins or the PKS genes. Herein we report the localization of PKS encoding genes by a combination of flow cytometry/PCR and fluorescence in situ hybridization (FISH). Two genes localized exclusively to K. brevis cells while a third localized to both K. brevis and associated bacteria. While these genes have not yet been linked to toxin production, the work describes the first definitive evidence of resident PKS genes in any dinoflagellate.


Subject(s)
Dinoflagellida/enzymology , Polyketide Synthases/genetics , Animals , Base Sequence , DNA Primers , Dinoflagellida/classification , Dinoflagellida/genetics , Gene Amplification , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Protozoan Proteins/genetics , RNA, Protozoan/genetics , RNA, Ribosomal, 16S/genetics
15.
Water Res ; 47(18): 6909-20, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23916711

ABSTRACT

The contribution of fecal pollution from dogs in urbanized areas can be significant and is an often underestimated problem. Microbial source tracking methods (MST) utilizing quantitative PCR of dog-associated gene sequences encoding 16S rRNA of Bacteroidales are a useful tool to estimate these contributions. However, data about the performance of available assays are scarce. The results of a multi-laboratory study testing two assays for the determination of dog-associated Bacteroidales (DogBact and BacCan-UCD) on 64 single and mixed fecal source samples created from pooled fecal samples collected in California are presented here. Standardization of qPCR data treatment lowered inter-laboratory variability of sensitivity and specificity results. Both assays exhibited 100% sensitivity. Normalization methods are presented that eliminated random and confirmed non-target responses. The combination of standardized qPCR data treatment, use of normalization via a non-target specific Bacteroidales assay (GenBac3), and application of threshold criteria improved the calculated specificity significantly for both assays. Such measures would reasonably improve MST data interpretation not only for canine-associated assays, but for all qPCR assays used in identifying and monitoring fecal pollution in the environment.


Subject(s)
Bacteroidetes/classification , Dogs/microbiology , Environmental Monitoring/methods , Real-Time Polymerase Chain Reaction/methods , Water Microbiology , Water Pollution/analysis , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , California , DNA, Bacterial/classification , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Feces , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sensitivity and Specificity , Single-Blind Method
16.
Water Res ; 47(18): 6883-96, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23916157

ABSTRACT

Here we report results from a multi-laboratory (n = 11) evaluation of four different PCR methods targeting the 16S rRNA gene of Catellicoccus marimammalium originally developed to detect gull fecal contamination in coastal environments. The methods included a conventional end-point PCR method, a SYBR(®) Green qPCR method, and two TaqMan(®) qPCR methods. Different techniques for data normalization and analysis were tested. Data analysis methods had a pronounced impact on assay sensitivity and specificity calculations. Across-laboratory standardization of metrics including the lower limit of quantification (LLOQ), target detected but not quantifiable (DNQ), and target not detected (ND) significantly improved results compared to results submitted by individual laboratories prior to definition standardization. The unit of measure used for data normalization also had a pronounced effect on measured assay performance. Data normalization to DNA mass improved quantitative method performance as compared to enterococcus normalization. The MST methods tested here were originally designed for gulls but were found in this study to also detect feces from other birds, particularly feces composited from pigeons. Sequencing efforts showed that some pigeon feces from California contained sequences similar to C. marimammalium found in gull feces. These data suggest that the prevalence, geographic scope, and ecology of C. marimammalium in host birds other than gulls require further investigation. This study represents an important first step in the multi-laboratory assessment of these methods and highlights the need to broaden and standardize additional evaluations, including environmentally relevant target concentrations in ambient waters from diverse geographic regions.


Subject(s)
Charadriiformes/microbiology , Enterococcaceae/classification , Real-Time Polymerase Chain Reaction/methods , Water Microbiology , Water Pollution/analysis , Animals , Base Sequence , California , Columbidae/microbiology , DNA, Bacterial/classification , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Enterococcaceae/genetics , Enterococcaceae/isolation & purification , Enterococcaceae/metabolism , Feces/microbiology , Molecular Sequence Data , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity
17.
Water Res ; 47(18): 6839-48, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23911226

ABSTRACT

Many PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Inter-laboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thoroughly evaluated. Knowledge of factors influencing PCR in different laboratories is vital to future technology transfer for use of MST methods as a tool for water quality management. In this study, a blinded set of 64 filters (containing 32 duplicate samples generated from 12 composite fecal sources) were analyzed by three to five core laboratories with a suite of PCR-based methods utilizing standardized reagents and protocols. Repeatability (intra-laboratory variability) and reproducibility (inter-laboratory variability) of observed results were assessed. When standardized methodologies were used, intra- and inter-laboratory %CVs were generally low (median %CV 0.1-3.3% and 1.9-7.1%, respectively) and comparable to those observed in similar inter-laboratory validation studies performed on other methods of quantifying fecal indicator bacteria (FIB) in environmental samples. ANOVA of %CV values found three human-associated methods (BsteriF1, BacHum, and HF183Taqman) to be similarly reproducible (p > 0.05) and significantly more reproducible (p < 0.05) than HumM2. This was attributed to the increased variability associated with low target concentrations detected by HumM2 (approximately 1-2 log10copies/filter lower) compared to other human-associated methods. Cow-associated methods (BacCow and CowM2) were similarly reproducible (p > 0.05). When using standardized protocols, variance component analysis indicated sample type (fecal source and concentration) to be the major contributor to total variability with that from replicate filters and inter-laboratory analysis to be within the same order of magnitude but larger than inherent intra-laboratory variability. However, when reagents and protocols were not standardized, inter-laboratory %CV generally increased with a corresponding decline in reproducibility. Overall, these findings verify the repeatability and reproducibility of these MST methods and highlight the need for standardization of protocols and consumables prior to implementation of larger scale MST studies involving multiple laboratories.


Subject(s)
Bacteria/classification , Environmental Monitoring/methods , Feces/microbiology , Real-Time Polymerase Chain Reaction/methods , Water Microbiology/standards , Water Pollution/analysis , Bacteria/genetics , Bacteria/metabolism , California , Reproducibility of Results
18.
Int J Epidemiol ; 39(5): 1291-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20522483

ABSTRACT

BACKGROUND: Microbial water-quality indicators, in high concentrations in sewage, are used to determine whether water is safe for recreational purposes. Recently, the use of these indicators to regulate recreational water bodies, particularly in sub/tropical recreational marine waters without known sources of sewage, has been questioned. The objectives of this study were to evaluate the risk to humans from exposure to subtropical recreational marine waters with no known point source, and the possible relationship between microbe densities and reported symptoms in human subjects with random-exposure assignment and intensive individual microbial monitoring in this environment. METHODS: A total of 1303 adult regular bathers were randomly assigned to bather and non-bather groups, with subsequent follow-up for reported illness, in conjunction with extensive environmental sampling of indicator organisms (enterococci). RESULTS: Bathers were 1.76 times more likely to report gastrointestinal illness [95% confidence interval (CI) 0.94-3.30; P = 0.07]; 4.46 times more likely to report acute febrile respiratory illness (95% CI 0.99-20.90; P = 0.051) and 5.91 times more likely to report a skin illness (95% CI 2.76-12.63; P < 0.0001) relative to non-bathers. Evidence of a dose-response relationship was found between skin illnesses and increasing enterococci exposure among bathers [1.46 times (95% CI 0.97-2.21; P = 0.07) per increasing log(10) unit of enterococci exposure], but not for gastrointestinal or respiratory illnesses. CONCLUSIONS: This study indicated that bathers may be at increased risk of several illnesses relative to non-bathers, even in the absence of any known source of domestic sewage impacting the recreational marine waters. There was no dose-response relationship between gastroenteritis and increasing exposure to enterococci, even though many current water-monitoring standards use gastroenteritis as the major outcome illness.


Subject(s)
Bathing Beaches , Enterococcus/isolation & purification , Environmental Exposure/adverse effects , Gram-Positive Bacterial Infections/etiology , Water Pollutants/adverse effects , Water Pollution/adverse effects , Adult , Age Factors , Gastrointestinal Diseases/etiology , Humans , Middle Aged , Oceans and Seas , Prospective Studies , Respiratory Tract Infections/etiology , Sewage/microbiology , Sex Factors , Skin Diseases, Bacterial/etiology , Time Factors , Water Pollutants/analysis , Water Pollution/analysis
19.
Water Res ; 44(13): 3763-72, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20605185

ABSTRACT

The use of enterococci as the primary fecal indicator bacteria (FIB) for the determination of recreational water safety has been questioned, particularly in sub/tropical marine waters without known point sources of sewage. Alternative FIB (such as the Bacteroidales group) and alternative measurement methods (such as rapid molecular testing) have been proposed to supplement or replace current marine water quality testing methods which require culturing enterococci. Moreover, environmental parameters have also been proposed to supplement current monitoring programs. The objective of this study was to evaluate the health risks to humans from exposure to subtropical recreational marine waters with no known point source. The study reported symptoms between one set of human subjects randomly assigned to marine water exposure with intensive environmental monitoring compared with other subjects who did not have exposure. In addition, illness outcomes among the exposed bathers were compared to levels of traditional and alternative FIB (as measured by culture-based and molecular-based methods), and compared to easily measured environmental parameters. Results demonstrated an increase in self-reported gastrointestinal, respiratory and skin illnesses among bathers vs. non-bathers. Among the bathers, a dose-response relationship by logistic regression modeling was observed for skin illness, where illness was positively related to enterococci enumeration by membrane filtration (odds ratio = 1.46 [95% confidence interval = 0.97-2.21] per increasing log10 unit of enterococci exposure) and positively related to 24 h antecedent rain fall (1.04 [1.01-1.07] per increasing millimeters of rain). Acute febrile respiratory illness was inversely related to water temperature (0.74 [0.56-0.98] per increasing degree of water temperature). There were no significant dose-response relationships between report of human illness and any of the other FIB or environmental measures. Therefore, for non-point source subtropical recreational marine waters, this study suggests that humans may be at increased risk of reported illness, and that the currently recommended and investigational FIB may not track gastrointestinal illness under these conditions; the relationship between other human illness and environmental measures is less clear.


Subject(s)
Bathing Beaches , Enterococcus/isolation & purification , Feces/microbiology , Recreation , Seawater/microbiology , Tropical Climate , Water Microbiology , Adult , Humans , Logistic Models , Multivariate Analysis , Respiratory Tract Diseases/microbiology , Skin/microbiology , Skin/pathology
20.
Environ Res J ; 2(4): 395-417, 2009.
Article in English | MEDLINE | ID: mdl-36567760

ABSTRACT

Data suggesting that fecal indicating bacteria may persist and/or regrow in sand has raised concerns that fecal indicators may become uncoupled from sources of human fecal pollution. To investigate this possibility, wet and dry beach sand, beach water, riverine water, canal water, and raw sewage samples were screened by PCR for certain pathogenic microbes and molecular markers of human fecal pollution. The targets included in this study were human specific Bacteroides (HF8 marker), human-specific enterococci (esp gene), Staphylococcus aureus, Escherichia coli 0157:H7, Campylobacter jejuni, and adenovirus. Sewage samples were also tested for Salmonella species. The results were compared to concentrations of enterococci, Escherichia coli, and Bacteroides species, as determined by membrane filtration methods. Molecular analysis yielded positive results for human specific Bacteroides, and S. aureus, in samples of raw sewage. Two of the environmental samples were positive for human specific Bacteroides and one was positive for S. aureus. The PCR screen was negative for other samples and targets, despite exceedance of EPA single sample guidelines for recreational waters on several of the sample dates (5/11 dates). However, estimates of the number of cells delivered to the PCR reaction suggested that few of the samples met the detection limit of the PCR reaction due to a variety of factors. The analysis indicated a need to improve nucleic acid processing in order to enable better delivery of DNA to downstream molecular methods.

SELECTION OF CITATIONS
SEARCH DETAIL