Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 608(7921): 199-208, 2022 08.
Article in English | MEDLINE | ID: mdl-35859180

ABSTRACT

Circulating tumour DNA (ctDNA) in blood plasma is an emerging tool for clinical cancer genotyping and longitudinal disease monitoring1. However, owing to past emphasis on targeted and low-resolution profiling approaches, our understanding of the distinct populations that comprise bulk ctDNA is incomplete2-12. Here we perform deep whole-genome sequencing of serial plasma and synchronous metastases in patients with aggressive prostate cancer. We comprehensively assess all classes of genomic alterations and show that ctDNA contains multiple dominant populations, the evolutionary histories of which frequently indicate whole-genome doubling and shifts in mutational processes. Although tissue and ctDNA showed concordant clonally expanded cancer driver alterations, most individual metastases contributed only a minor share of total ctDNA. By comparing serial ctDNA before and after clinical progression on potent inhibitors of the androgen receptor (AR) pathway, we reveal population restructuring converging solely on AR augmentation as the dominant genomic driver of acquired treatment resistance. Finally, we leverage nucleosome footprints in ctDNA to infer mRNA expression in synchronously biopsied metastases, including treatment-induced changes in AR transcription factor signalling activity. Our results provide insights into cancer biology and show that liquid biopsy can be used as a tool for comprehensive multi-omic discovery.


Subject(s)
Circulating Tumor DNA , Drug Resistance, Neoplasm , Genome, Human , Genomics , High-Throughput Nucleotide Sequencing , Mutation , Prostatic Neoplasms , Androgen Receptor Antagonists/pharmacology , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Clone Cells/metabolism , Clone Cells/pathology , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Genetic Markers/genetics , Genome, Human/genetics , Genomics/methods , Humans , Liquid Biopsy/methods , Male , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Nucleosomes/genetics , Nucleosomes/metabolism , Prostatic Neoplasms/blood , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Neoplasm/analysis , RNA, Neoplasm/genetics , Receptors, Androgen/metabolism
2.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38580393

ABSTRACT

Epithelial ovarian cancer (EOC) is one of the leading causes of cancer-related death in women worldwide, and is characterized by a high rate of recurrence after surgery and chemotherapy. We sought to implement a circulating tumor DNA (ctDNA)-based blood test for more accurate post-operative surveillance of this disease. We analyzed 264 plasma samples collected between June 2016 and September 2021 from 63 EOC patients using tumor-guided plasma cell-free DNA analysis to detect residual disease after treatment. Assay specificity was verified using cross-patient analysis of 1,195 control samples. ctDNA was detected in 51 of 55 (93%) samples at diagnosis, and 18 of 18 (100%) samples at progression. Positive ctDNA in the last on-treatment sample was associated with rapid progression (median 1.02 versus 3.38 yr, HR = 5.63, P < 0.001) and reduced overall survival (median 2.31 versus NR yr, HR = 8.22, P < 0.001) in patients with high-grade serous cancer. In the case of 12 patients, ctDNA assays detected progression earlier than standard surveillance, with a median lead time of 5.9 mo. To approach the physical limits of ctDNA detection, five patients were analyzed using ultra-sensitive assays interrogating 479-1,856 tumor mutations, capable of tracking ctDNA fractions down to 0.0004%. Our results demonstrate that ctDNA assays achieve high sensitivity and specificity in detecting post-operative residual disease in EOC.


Subject(s)
Circulating Tumor DNA , Ovarian Neoplasms , Humans , Female , Circulating Tumor DNA/genetics , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/genetics , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics
3.
Nat Cancer ; 5(1): 114-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177459

ABSTRACT

De novo metastatic prostate cancer is highly aggressive, but the paucity of routinely collected tissue has hindered genomic stratification and precision oncology. Here, we leveraged a rare study of surgical intervention in 43 de novo metastatic prostate cancers to assess somatic genotypes across 607 synchronous primary and metastatic tissue regions plus circulating tumor DNA. Intra-prostate heterogeneity was pervasive and impacted clinically relevant genes, resulting in discordant genotypes between select primary restricted regions and synchronous metastases. Additional complexity was driven by polyclonal metastatic seeding from phylogenetically related primary populations. When simulating clinical practice relying on a single tissue region, genomic heterogeneity plus variable tumor fraction across samples caused inaccurate genotyping of dominant disease; however, pooling extracted DNA from multiple biopsy cores before sequencing can rescue misassigned somatic genotypes. Our results define the relationship between synchronous treatment-sensitive primary and metastatic lesions in men with de novo metastatic prostate cancer and provide a framework for implementing genomics-guided patient management.


Subject(s)
Precision Medicine , Prostatic Neoplasms , Male , Humans , Genotype , Prostatic Neoplasms/genetics , Prostate/pathology , Biopsy
4.
Clin Cancer Res ; 27(16): 4610-4623, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34083234

ABSTRACT

PURPOSE: Cross-resistance renders multiple lines of androgen receptor (AR) signaling inhibitors increasingly futile in metastatic castration-resistant prostate cancer (mCRPC). We sought to determine acquired genomic contributors to cross-resistance. EXPERIMENTAL DESIGN: We collected 458 serial plasma cell-free DNA samples at baseline and progression timepoints from 202 patients with mCRPC receiving sequential AR signaling inhibitors (abiraterone and enzalutamide) in a randomized phase II clinical trial (NCT02125357). We utilized deep targeted and whole-exome sequencing to compare baseline and posttreatment somatic genomic profiles in circulating tumor DNA (ctDNA). RESULTS: Patient ctDNA abundance was correlated across plasma collections and independently prognostic for sequential therapy response and overall survival. Most driver alterations in established prostate cancer genes were consistently detected in ctDNA over time. However, shifts in somatic populations after treatment were identified in 53% of patients, particularly after strong treatment responses. Treatment-associated changes converged upon the AR gene, with an average 50% increase in AR copy number, changes in AR mutation frequencies, and a 2.5-fold increase in the proportion of patients carrying AR ligand binding domain truncating rearrangements. CONCLUSIONS: Our data show that the dominant AR genotype continues to evolve during sequential lines of AR inhibition and drives acquired resistance in patients with mCRPC.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Androstenes/therapeutic use , Benzamides/therapeutic use , Circulating Tumor DNA/blood , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL