ABSTRACT
The aim of this study was to identify, using proteomics, the molecular alterations caused by human serum exposure to Klebsiella pneumoniae ACH2. The analysis was performed under two different conditions, native serum from healthy donors and heat-inactivated serum (to inactivate the complement system), and at two different times, after 1 and 4 h of serum exposure. More than 1,000 bacterial proteins were identified at each time point. Enterobactin, a siderophore involved in iron uptake, and proteins involved in translation were upregulated at 1 h, while the chaperone ProQ and the glyoxylate cycle were identified after 4 h. Enzymes involved in the stress response were downregulated, and the SOD activity was validated using an enzymatic assay. In addition, an intricate metabolic adaptation was observed, with pyruvate and thiamine possibly involved in survival and virulence in the first hour of serum exposure. The addition of exogenous thiamine contributes to bacterial growth in human serum, corroborating this result. During 4 h of serum exposure, the glyoxylate cycle (GC) probably plays a central role, and the addition of exogenous succinate suppresses the GC, inducing a decrease in serum resistance. Therefore, serum exposure causes important changes in iron acquisition, the expression of virulence factors, and metabolic reprogramming, which could contribute to bacterial serum resistance.
Subject(s)
Bacterial Proteins , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/pathogenicity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Immune Evasion , Serum/metabolism , Proteomics/methods , Virulence Factors/metabolism , Iron/metabolism , Thiamine/pharmacology , Thiamine/metabolism , Host-Pathogen Interactions , Klebsiella Infections/microbiology , Klebsiella Infections/immunology , Glyoxylates/metabolism , Metabolic ReprogrammingABSTRACT
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in pigs at early age, leading to high mortality rates and significant economic losses in the swine industry. ETEC effect on gut microbiota and immune system is mostly studied in diarrheic model under controlled laboratory conditions, however its impact on asymptomatic carriers remains unknown. Thus, we investigated whether ETEC can modulate gut microbiota or regulate the transcription of immune markers in asymptomatic pigs in farm environment. Stool samples from newborn piglets, nursery and growing pigs, and sows were screened for ETEC markers, then submitted to 16S-rDNA sequencing to explore gut microbiota composition in carriers (ETEC+) and non-carriers (ETEC-) animals. We observed a reduced α-diversity in ETEC+ animals (p < 0.05), while bacterial compositions were mostly driven by ageing (p > 0.05). Prevotella marked ETEC-carrier group, while Rikenellaceae RC9 gut group was a marker for a healthy gut microbiota, suggesting that they might be biomarker candidates for surveillance and supplementation purposes. Furthermore, we observed transcription regulation of il6 and tff2 genes in ETEC+ in newborn and nursery stages, respectively. Our findings indicate that ETEC presence modulate gut microbiota and the immune response in asymptomatic pigs; nevertheless, further studies using a probabilistic design must be performed to assess the effect of ETEC presence on gut imbalance in pigs despite the age bias.
Subject(s)
Carrier State , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Feces , Gastrointestinal Microbiome , Swine Diseases , Animals , Enterotoxigenic Escherichia coli/immunology , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/pathogenicity , Swine , Escherichia coli Infections/veterinary , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Swine Diseases/microbiology , Swine Diseases/immunology , Feces/microbiology , Carrier State/veterinary , Carrier State/microbiology , Carrier State/immunology , Virulence/genetics , Animals, Newborn , Diarrhea/microbiology , Diarrhea/veterinary , Diarrhea/immunology , RNA, Ribosomal, 16S/genetics , Virulence Factors/genetics , Biomarkers , FemaleABSTRACT
AIMS: Pyometra and cystitis caused by Escherichia coli are common diseases identified in canine or feline females. The origin of pyometra infection remains uncertain, and effective prevention strategies for this disease are still unknown. This study aimed to provide a phenotypic characterization, including antimicrobial resistance and virulence profiles, of endometrial pathogenic (EnPEC) and uropathogenic (UPEC) E. coli strains isolated simultaneously from the same animal. METHODS AND RESULTS: Sixteen E. coli strains, from eight different animals, were analyzed in this study. The antimicrobial susceptibility profile of EnPEC and UPEC strains was determined using the disc diffusion method, which showed a similar susceptibility profile among strains (EnPEC and UPEC) from the same animal. The virulence profile of the strains was assessed through biofilm formation, as well as serum resistance abilities. EnPEC and UPEC strains from the same animal exhibited slight variations in their virulence and antimicrobial resistance capabilities. Overall, most of the strain pairs showed a high similarity in their ability to establish biofilms and survive in serum complement activity. CONCLUSIONS: Overall, strains of E. coli isolated from both pyometra and cystitis in the same animal, despite presenting distinct clinical diseases, exhibit a wide phenotypic similarity, suggesting a common origin for the strains.
Subject(s)
Biofilms , Cat Diseases , Cystitis , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Phenotype , Pyometra , Animals , Cystitis/microbiology , Cystitis/veterinary , Pyometra/microbiology , Pyometra/veterinary , Female , Cats , Dogs , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Cat Diseases/microbiology , Biofilms/growth & development , Virulence , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Uropathogenic Escherichia coli/isolation & purification , Uropathogenic Escherichia coli/pathogenicity , Drug Resistance, BacterialABSTRACT
Fungi have already been described as etiological agents of reproductive diseases such as endometritis and infertility in cows. However, few studies have been developed to elucidate the entire cervicovaginal fungal communities in cows. Therefore, our study aimed to characterize the fungal community present in the cervix of cows with different reproductive performances. Cervicovaginal mucus was collected from 36 Angus breed cows (1.5-12 years old) on a commercial beef cattle ranch. Twenty-one cows had a history of infertility in the year prior to the collection, showing early return to estrus. Ten cows were sampled at 60-70 days postpartum being considered fertile cows. Additionally, five non-sexually active heifers were employed as control group. Ascomycota and Basidiomycota were the predominant fungal phyla in the analyzed animals. Diversity metrics of the cervicovaginal fungal community revealed statistical differences in the composition of the fungal community among infertile cows, fertile cows and non-sexually active heifers. In addition, the cervicovaginal fungal microbiota had significative increased richness and evenness in nulliparous cows and non-sexually active heifers, while in multiparous cows a decreased richness and evenness of the fungal microbiota were identified. These results provide an unprecedented understanding of the cervicovaginal fungal structure associated with infertility and parity order.
Subject(s)
Endometritis , Mycobiome , Animals , Cattle , Female , Humans , Parity , Postpartum Period , Pregnancy , ReproductionABSTRACT
Gut microbiota exerts a fundamental role in human health and increased evidence supports the beneficial role of probiotic microorganisms in the maintenance of intestinal health. Enterococcus durans LAB18S was previously isolated from soft cheese and showed some desirable in vitro probiotic properties, for that reason its genome was sequenced and evaluated for genes that can be relevant for probiotic activity and are involved in selenium metabolism. Genome sequencing was performed using the Illumina MiSeq System. A variety of genes potentially associated with probiotic properties, including adhesion capability, viability at low pH, bile salt resistance, antimicrobial activity, and utilization of prebiotic fructooligosaccharides (FOS) were identified. The strain showed tolerance to acid pH and bile salts, exhibited antimicrobial activity and thrived on prebiotic oligosaccharides. Six genes involved in selenium metabolism were predicted. Analysis of the SECIS element showed twelve known selenoprotein candidates. E. durans LAB18S was the only food isolate showing absence of plasmids, virulence and antimicrobial resistance genes, when compared with other 30 E. durans genomes. The results of this study provide evidence supporting the potential of E. durans LAB18S as alternative for probiotic formulations.
ABSTRACT
BACKGROUND: Small RNAs (sRNAs) are noncoding molecules that regulate different cellular activities in several bacteria. The role of sRNAs in gene expression regulation is poorly characterized in the etiological agent of porcine enzootic pneumonia Mycoplasma hyopneumoniae. We performed a global analysis of the sRNAs, sRNA target genes and regulatory elements previously identified in their genome and analyzed the expression of some sRNAs and their target genes by quantitative RT-PCR (qPCR) in three different culture conditions. RESULTS: Seven of the 145 sRNA target genes are organized as monocistronic genes (mCs) while the other 138 sRNA target genes are organized into transcriptional units (TU). The identification of transcriptional regulatory elements (promoter motif, DNA repeat sequence or intrinsic terminator) was verified in 116 of the 145 sRNA target genes. Moreover, the 29 sRNA target genes without regulatory elements revealed the presence of at least one regulatory element in the boundaries of the TU or in other internal genes of the TU. We verified that 16 sRNAs showed differential expression, seven in heat shock condition and 14 in oxidative stress condition. Analysis of the differential expression of the sRNA target genes showed that the tested sRNAs possibly regulate gene expression. The sRNA target genes were up- or down-regulated possibly in response to sRNA only under oxidative stress condition. Moreover, the sRNA target genes are involved in diverse processes of the cell, some of which could be linked to transcription processes and cell homeostasis. CONCLUSION: Our results indicate that bacterial sRNAs could regulate a number of targets with various outcomes, and different correlations between the levels of sRNA transcripts and their target gene mRNAs were found, which suggest that the regulation of gene expression via sRNAs may play an important role in mycoplasma.
Subject(s)
Gene Expression Regulation, Bacterial , Mycoplasma hyopneumoniae/genetics , RNA Interference , RNA, Bacterial , RNA, Small Untranslated , Animals , Computational Biology/methods , Gene Expression Profiling , Pneumonia of Swine, Mycoplasmal , Swine , TranscriptomeABSTRACT
Mycoplasmas belong to the Mollicutes class and possess low GC content and lack a cell wall, and also simplified metabolic pathways. Due to its reduced metabolic ability mycoplasmas are fastidious organisms growing with difficult under laboratory conditions. Its complex nutritional requirements render mycoplasmas to depend on external supplies of biosynthetic precursors. Aiming to develop and test defined media that could be used as a tool for Mycoplasma research, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis were cultivated in a complex medium supplemented with serum (Friis broth) and in four different defined media (YUS, YUSm, CMRL and CMRL+, that was developed in the present study). The cell concentration of both Mycoplasma species was assessed, by flow cytometry. Cellular viability was also analyzed in all defined media, indicating the presence of viable mycoplasma cells. All the defined media tested were able to maintain cell concentrations and viability and, amongst them, CMRL+ was the most suitable. For both Mycoplasma species, only the CMRL+ media showed similar cell density when compared to the complex medium. The transcriptional response of M. hyopneumoniae in CMRL+ broth was assessed by RT-qPCR, and the transcriptional profile of 18 genes in three cultures conditions (standard, heat shock and oxidative stress) was analyzed demonstrating gene expression regulation in response to the medium composition and to the culture conditions tested. The medium developed enables the definition of mycoplasmal nutritional requirements and metabolic pathways as well as genetic analysis.
Subject(s)
Mycoplasma hyopneumoniae/genetics , Mycoplasma hyorhinis/genetics , Culture Media/chemistry , Gene Expression/genetics , Gene Expression Regulation, Bacterial/genetics , Metabolic Networks and Pathways , Mycoplasma hyopneumoniae/growth & development , Mycoplasma hyorhinis/growth & development , Species SpecificityABSTRACT
BACKGROUND: Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes. We performed the identification of trans-encoded small RNAs (sRNA) from the genomes of Mycoplama hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been identified in the porcine respiratory system. RESULTS: A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which could be linked to pathogenesis and cell homeostasis activity. CONCLUSION: This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and comprehension of the function of the sRNA regulatory mechanisms.
Subject(s)
Gene Expression Regulation, Bacterial , Mycoplasma/genetics , RNA Interference , RNA, Untranslated/genetics , Animals , Computational Biology/methods , Gene Expression Profiling , RNA, Untranslated/chemistry , SwineABSTRACT
BACKGROUND: Mycoplasma hyopneumoniae, an important pathogen of swine, exhibits a low guanine and cytosine (GC) content genome. M. hyopneumoniae genome is organised in long transcriptional units and promoter sequences have been mapped upstream of all transcription units. These analysis provided insights into the gene organisation and transcription initiation at the genome scale. However, the presence of transcriptional terminator sequences in the M. hyopneumoniae genome is poorly understood. RESULTS: In silico analyses demonstrated the presence of putative terminators in 82% of the 33 monocistronic units (mCs) and in 74% of the 116 polycistronic units (pCs) considering different classes of terminators. The functional activity of 23 intrinsic terminators was confirmed by RT-PCR and qPCR. Analysis of all terminators found by three software algorithms, combined with experimental results, allowed us to propose a pattern of RNA hairpin formation during the termination process and to predict the location of terminators in the M. hyopneumoniae genome sequence. CONCLUSIONS: The stem-loop structures of intrinsic terminators of mycoplasma diverge from the pattern of terminators found in other bacteria due the low content of guanine and cytosine. In M. hyopneumoniae, transcription can end after a transcriptional unit and before its terminator sequence and can also continue past the terminator sequence with RNA polymerases gradually releasing the RNA.
Subject(s)
Mycoplasma hyopneumoniae/genetics , RNA, Small Interfering/genetics , Swine/microbiology , Transcription Termination, Genetic , Animals , Base Sequence , Chromosome Mapping , DNA-Directed RNA Polymerases/genetics , Mycoplasma hyopneumoniae/pathogenicity , Promoter Regions, Genetic , Swine/geneticsABSTRACT
Information related to open reading frame (ORF) organization, transcription regulation and promoter sequence has been available for the Mycoplasma hyopneumoniae 7448 genome, demonstrating that the ORFs are continuously transcribed (cotranscription) in large clusters. A species-specific position-specific scoring matrix was applied to scan for putative promoters upstream of all coding sequences on a genome scale in M. hyopneumoniae. This study consisted of a detailed in silico promoter localization analysis by scanning the position-specific promoters upstream of predicted ORF clusters (OCs) and mCs (monocistronic genes) in the M. hyopneumoniae whole genome; this was combined with experimental data for the promoterless ORFs. Promoter-like sequences were found in 86% of the OCs (from the OC first gene) and in 85% of the mCs. A transcription analysis of the promoterless ORF was performed by RT-PCR. This strategy allowed the definition of a specific promoter sequence for all OCs and mCs indicating that all the transcriptional units are preceded by putative promoter sequences (matrix and manually located) and providing evidence for functional gene organization in the M. hyopneumoniae genome. These results shown that the species-specific, position-specific scoring matrix for promoter prediction is effective, further increasing the knowledge of gene organization and transcription initiation in mycoplasmas.
Subject(s)
Gene Expression Regulation, Bacterial , Genome, Bacterial , Mycoplasma hyopneumoniae/genetics , Promoter Regions, Genetic , Culture Media , DNA, Bacterial/genetics , Open Reading Frames , Transcription, GeneticABSTRACT
Pseudomonas sp. 4B isolated from the effluent pond of a bovine abattoir was investigated as antifungal against toxigenic fungi. The complete genome of Pseudomonas 4B was sequenced using the Illumina MiSeq platform. Phylogenetic analysis and genome comparisons indicated that the strain belongs to the Pseudomonas aeruginosa group. In silico investigation revealed gene clusters associated with the biosynthesis of several antifungals, including pyocyanin, rhizomide, thanamycin, and pyochelin. This bacterium was investigated through antifungal assays, showing an inhibitory effect against all toxigenic fungi tested. Bacterial cells reduced the diameter of fungal colonies, colony growth rate, and sporulation of each indicator fungi in 10-day simultaneous growing tests. The co-incubation of bacterial suspension and fungal spores in yeast extract-sucrose broth for 48 h resulted in reduced spore germination. During simultaneous growth, decreased production of aflatoxin B1 and ochratoxin A by Aspergillus flavus and Aspergillus carbonarius, respectively, was observed. Genome analysis and in vitro studies showed the ability of P. aeruginosa 4B to reduce fungal growth parameters and mycotoxin levels, indicating the potential of this bacterium to control toxigenic fungi. The broad antifungal activity of this strain may represent a sustainable alternative for the exploration and subsequent use of its possible metabolites in order to control mycotoxin-producing fungi.
Subject(s)
Antifungal Agents , Mycotoxins , Animals , Cattle , Pseudomonas/metabolism , Phylogeny , Aspergillus flavus/metabolism , Mycotoxins/metabolism , Pseudomonas aeruginosa/metabolism , Fungi/metabolismABSTRACT
The microbiota's alteration is an adaptive mechanism observed in wild animals facing high selection pressure, especially in captive environments. The objective of this study is to compare and predict the potential impact of habitat on the fecal bacterial community of Saltator similis, a songbird species that is a victim of illegal trafficking, living in two distinct habitats: wild and captivity. Nine wild and nine captive S. similis were sampled, and total bacterial DNA was obtained from the feces. Each DNA sample was employed to the amplification of the V4 region of the 16S rDNA following high-throughput sequencing. The most predominant phyla in all songbirds, irrespective of habitat, were Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteriota. Interestingly, a microbiota profile (phylogenetic and abundance relationship) related to habitat was identified. The genera "Candidatus Arthromitus", Acinetobacter, Kocuria, and Paracoccus were exclusively identified in animals living in captivity, which can be a potential biomarker associated with birds in captive environments. This study presents the first description of the fecal bacterial community composition of S. similis living two different lifestyles. Finally, our results suggest that the lifestyle of S. similis birds significantly impacts the composition of the fecal microbiota. The animals living in captivity showed dysbiosis in the microbiota, with some bacteria genera being indicated as biological markers of environmental behavior. Thus, the present research provides a new concept of life quality measure for songbirds.
ABSTRACT
Staphylococcus pseudintermedius is frequently associated with several bacterial infections in dogs, highlighting a One Health concern due to the zoonotic potential. Given the clinical significance of this pathogen, we performed comprehensive genomic analyses of 28 S. pseudintermedius strains isolated from canine infections throughout whole-genome sequencing using Illumina HiSeq, and compared the genetic features between S. pseudintermedius methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains. Our analyses determined that MRSP genomes are larger than MSSP strains, with significant changes in antimicrobial resistance genes and virulent markers, suggesting differences in the pathogenicity of MRSP and MSSP strains. In addition, the pangenome analysis of S. pseudintermedius from canine and human origins identified core and accessory genomes with 1847 and 3037 genes, respectively, which indicates that most of the S. pseudintermedius genome is highly variable. Furthermore, phylogenomic analysis clearly separated MRSP from MSSP strains, despite their infection sites, showing phylogenetic differences according to methicillin susceptibility. Altogether our findings underscore the importance of studying the evolutionary dynamics of S. pseudintermedius, which is crucial for the development of effective prevention and control strategies of resistant S. pseudintermedius infections.
ABSTRACT
Escherichia coli (E. coli) are widely related to pyometra and cystitis in dogs, and these infections can occur simultaneously. The goal of this study was to determine genetic and pathogenic insights of 14 E. coli isolated simultaneously from pyometra content and bladder urine of seven bitches. To achieve this, in silico and in vitro comparative analyses were conducted. Whole-genome comparisons demonstrated that E. coli isolated from pyometra and urine of the same animal were predominantly genetic extraintestinal E. coli clones belonging to the same Sequence Type and phylogroup. The E. coli clones identified in this study included ST372, ST457, ST12, ST127, ST646, and ST961. Five isolates (35.7%) belonged to the ST12 complex. Except for two E. coli, all other isolates belonged to the B2 Clermont phylogroup. Interestingly, some genomes of E. coli from urine carried more virulence genes than those E. coli from pyometra. Both pyometra and urine E. coli isolates demonstrated a strong affinity for adhering to HeLa and T24 cells, with a low affinity for invading them. However, certain isolates from urine exhibited a greater tendency to adhere to T24 cells in qualitative and quantitative assays compared to isolates from pyometra. In conclusion, this study revealed the high genomic similarity between pyometra and urine E. coli isolates, as well as the virulent capacity of both to colonize endometrial and urothelial cells. The findings of this study underscore the importance of concurrently managing both infections clinically and could potentially contribute to future resources for the prevention of cystitis and pyometra.
Subject(s)
Dog Diseases , Escherichia coli Infections , Escherichia coli , Pyometra , Animals , Dogs , Pyometra/veterinary , Pyometra/microbiology , Pyometra/urine , Female , Dog Diseases/microbiology , Dog Diseases/urine , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/urine , Genome, Bacterial , PhylogenyABSTRACT
The bacterial composition of and the circulation of antimicrobial resistance genes (ARGs) in waste from Brazilian swine farms are still poorly understood. Considering that antimicrobial resistance (AMR) is one of the main threats to human, animal, and environmental health, the need to accurately assess the load of ARGs released into the environment is urgent. Therefore, this study aimed to characterize the microbiota in a swine farm in southern Brazil and the resistome in swine farm wastewater treated in a series of waste stabilization ponds (WSPs). Samples were collected from farm facilities and the surrounding environment, representing all levels of swine manure within the treatment system. Total metagenomic sequencing was performed on samples from WSPs, and 16S-rDNA sequencing was performed on all the collected samples. The results showed increased bacterial diversity in WSPs, characterized by the presence of Caldatribacteriota, Cloacimonadota, Desulfobacterota, Spirochaetota, Synergistota, and Verrucomicrobiota. Furthermore, resistance genes to tetracyclines, lincosamides, macrolides, rifamycin, phenicol, and genes conferring multidrug resistance were detected in WSPs samples. Interestingly, the most abundant ARG was linG, which confers resistance to the lincosamides. Notably, genes conferring macrolide (mphG and mefC) and rifamycin (rpoB_RIF) resistance appeared in greater numbers in the late WSPs. These drugs are among the high-priority antibiotic classes for human health. Moreover, certain mobile genetic elements (MGEs) were identified in the samples, notably tnpA, which was found in high abundance. These elements are of particular concern due to their potential to facilitate the dissemination of ARGs among bacteria. In summary, the results indicate that, in the studied farm, the swine manure treatment system could not eliminate ARGs and MGEs. Our results validate concerns about Brazil's swine production system. The misuse and overuse of antimicrobials during animal production must be avoided to mitigate AMR.
Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Farms , Animals , Swine , Brazil , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Wastewater/microbiology , Manure/microbiology , Microbiota/drug effects , Microbiota/geneticsABSTRACT
BACKGROUND: Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis live in swine respiratory tracts. M. flocculare, a commensal bacterium, is genetically closely related to M. hyopneumoniae, the causative agent of enzootic porcine pneumonia. M. hyorhinis is also pathogenic, causing polyserositis and arthritis. In this work, we present the genome sequences of M. flocculare and M. hyopneumoniae strain 7422, and we compare these genomes with the genomes of other M. hyoponeumoniae strain and to the a M. hyorhinis genome. These analyses were performed to identify possible characteristics that may help to explain the different behaviors of these species in swine respiratory tracts. RESULTS: The overall genome organization of three species was analyzed, revealing that the ORF clusters (OCs) differ considerably and that inversions and rearrangements are common. Although M. flocculare and M. hyopneumoniae display a high degree of similarity with respect to the gene content, only some genomic regions display considerable synteny. Genes encoding proteins that may be involved in host-cell adhesion in M. hyopneumoniae and M. flocculare display differences in genomic structure and organization. Some genes encoding adhesins of the P97 family are absent in M. flocculare and some contain sequence differences or lack of domains that are considered to be important for adhesion to host cells. The phylogenetic relationship of the three species was confirmed by a phylogenomic approach. The set of genes involved in metabolism, especially in the uptake of precursors for nucleic acids synthesis and nucleotide metabolism, display some differences in copy number and the presence/absence in the three species. CONCLUSIONS: The comparative analyses of three mycoplasma species that inhabit the swine respiratory tract facilitated the identification of some characteristics that may be related to their different behaviors. M. hyopneumoniae and M. flocculare display many differences that may help to explain why one species is pathogenic and the other is considered to be commensal. However, it was not possible to identify specific virulence determinant factors that could explain the differences in the pathogenicity of the analyzed species. The M. hyorhinis genome contains differences in some components involved in metabolism and evasion of the host's immune system that may contribute to its growth aggressiveness. Several horizontal gene transfer events were identified. The phylogenomic analysis places M. hyopneumoniae, M. flocculare and M. hyorhinis in the hyopneumoniae clade.
Subject(s)
Mycoplasma/classification , Mycoplasma/genetics , Pneumonia of Swine, Mycoplasmal/microbiology , Respiratory System/microbiology , Animals , Chromosome Mapping , Genome , Mycoplasma/pathogenicity , Phylogeny , Pneumonia of Swine, Mycoplasmal/genetics , Pneumonia of Swine, Mycoplasmal/pathology , Respiratory System/pathology , SwineABSTRACT
We describe an unusual case of prostatitis caused by Streptococcus canis evolving to endocarditis and splenic, renal, and cerebral thromboembolism in a dog, associated with a Sertoli cell tumour in a cryptic testis and diffuse prostatic squamous metaplasia. A nine-year-old, intact male, mixed-breed dog was presented to a veterinary teaching hospital with abdominal pain and prostration. Physical examination and abdominal ultrasonography revealed an atrophic right testicle located in the subcutaneous tissue. The left testicle was in the abdominal cavity with increased dimensions and irregular contours. Complete blood count analysis showed marked neutrophilic leukocytosis and thrombocytopenia. After clinical worsening, euthanasia was performed, and the dog was submitted to post-mortem examination. The main gross findings included testicular malposition with one cryptic and one ectopic testis, enlarged prostate with purulent content, distension of the urinary bladder with cloudy urine, vegetative valvular endocarditis in the mitral valve, and spleen and renal infarcts. Histological examination showed a Sertoli cell tumour in the abdominal testis, diffuse prostatic squamous metaplasia with marked keratinization associated with bacterial prostatitis, fibrinonecrotic cystitis, bacterial endocarditis with marked myxomatous degeneration in the mitral valve, and splenic, renal, and cerebral thromboembolism. Microbiological analysis identified Streptococcus canis in the prostate and mitral valve. Sertoli cell tumour of cryptic testis increases oestrogen production and leads to squamous metaplasia of the prostate, which should be considered as predisposing factors for ascending S. canis infection from the urogenital tract to the prostate. Then, haematogenous spread of S. canis from the prostate to mitral valve cause endocarditis and subsequent thromboembolism and infarcts, all decisive to poor prognosis in this case.
Subject(s)
Carcinoma, Squamous Cell , Dog Diseases , Endocarditis , Prostatitis , Sertoli Cell Tumor , Testicular Neoplasms , Thromboembolism , Male , Dogs , Animals , Prostatitis/complications , Prostatitis/veterinary , Sertoli Cell Tumor/veterinary , Hospitals, Animal , Hospitals, Teaching , Endocarditis/veterinary , Thromboembolism/veterinary , Testicular Neoplasms/complications , Testicular Neoplasms/veterinary , Metaplasia/veterinary , Carcinoma, Squamous Cell/veterinary , Dog Diseases/diagnosisABSTRACT
Staphylococcus pseudintermedius is a zoonotic pathogen responsible for several infectious diseases in pet animals, yet its pathogenic potential is not fully understood. Thus, this study aims to unravel the virulence profile of S. pseudintermedius from canine origin. Methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains were isolated from different infection sites and their genotypic and phenotypic features were compared to determine the clinical implications of MRSP and MSSP strains. Bacterial identification was performed using MALDI-TOF and 16S-rDNA sequencing. In addition, we used multilocus sequence typing (MLST) for strains' sequence type (ST) determination and phylogenetic relationship. The strains were screened for toxin genes, including cytotoxins (lukS, lukF), exfoliative toxin (siet), enterotoxins (sea, seb, sec, secCanine, sel, sem, and seq) and toxic shock syndrome toxin (tst-1). In vitro phenotypic analyses assessing antimicrobial susceptibility profile, biofilm formation ability, and expression of extracellular matrix components were performed. The investigated S. pseudintermedius strains belong to 17 unique ST, most of which were classified as ST71. MSSP and MRSP strains shared siet, lukS, and lukF virulence markers. Our findings showed that some MSSP strains also harbored sel, seq, and sem enterotoxin genes, suggesting a more diverse virulence profile. All MRSP strains and 77% of MSSP strains were classified as multidrug resistant (MDR). Moreover, all investigated S. pseudintermedius strains showed strong biofilm formation ability. In summary, our findings highlight the wide spread of highly virulent and drug-resistant zoonotic S. pseudintermedius strains, being a potential concern for One Health issues.
Subject(s)
Dog Diseases , Staphylococcal Infections , Dogs , Animals , Methicillin/pharmacology , Methicillin Resistance/genetics , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Multilocus Sequence Typing , Phylogeny , Dog Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity TestsABSTRACT
Cattle farming is a major livestock activity with economic relevance in Rio Grande do Sul (RS), Brazil. However, this activity is still considered of intermediate to low technological level, and in this region, there are few epidemiologic reports of Campylobacter fetus subsp. venerealis (Cfv), the causative agent of bovine genital campylobacteriosis (BGC). Thus, we designed a cross-sectional study to assess the prevalence and Cfv-associated factors in cattle farms in RS, Brazil. In total, 99 farms were randomly selected to participate in the survey. Preputial mucus samples from selected bulls were collected twice (within a 15-day interval) and subjected to Cfv molecular detection. A farm was considered positive when at least one sample was positive for Cfv. Our findings indicate that the farm-level Cfv prevalence in RS is 67.67%. On average, the chance of a farm using natural service to be Cfv-positive increased approximately twice compared to farms that do not use natural service. We also determined that Cfv routine tests reduce the chance of a farm being positive by 92%. Therefore, both Cfv detection tests and the reduction of natural services decrease the chance of a farm being positive for Cfv. Finally, we conclude that Cfv is widely spread in Southern Brazil cattle farms and it is urgent the implementation of control measures to reduce Cfv prevalence in the target population.
Subject(s)
Campylobacter Infections , Cattle Diseases , Cattle , Animals , Male , Campylobacter fetus , Farms , Cross-Sectional Studies , Brazil/epidemiology , Prevalence , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Cattle Diseases/microbiologyABSTRACT
Brucella canis is responsible for canine brucellosis, a neglected zoonotic disease. The omp25 gene has been described as an important marker for Brucella intra-species differentiation, in addition to the ability to interact with the host immune system. Therefore, this study investigated the omp25 sequence from B. canis strains associated to a phylogenetic characterization and the unveiling of the molecular structure. In vitro analyses comprised DNA extraction, PCR, and sequencing of omp25 from 19 B. canis strains. Moreover, in silico analyses were performed at nucleotide level for phylogenetic characterization and evolutionary history of B. canis omp25 gene; and in amino acid level including modeling, dynamics, and epitope prediction of B. canis Omp25 protein. Here, we identified a new mutation, L109P, which diverges the worldwide omp25 sequences in two large branches. Interestingly, this mutation appears to have epidemiology importance, based on a geographical distribution of B. canis strains. Structural and molecular dynamics analyses of Omp25 revealed that Omp25L109P does not sustain its native ß-barrel. Likewise, the conformation of B-cell epitope on the mutated region was changed in Omp25L109P protein. Even without an evolutive marker, the new identified mutation appears to affect the basic function of B. canis Omp25 protein, which could indicate virulence adaptation for some B. canis strains in a context of geographical disposition.