Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur Radiol ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279057

ABSTRACT

OBJECTIVES: Cerebral magnetic resonance imaging (cMRI) at term-equivalent age (TEA) can detect brain injury (BI) associated with adverse neurological outcomes in preterm infants. This study aimed to assess BI incidences in a large, consecutive cohort of preterm infants born < 32 weeks of gestation, the comparison between very (VPT, ≥ 28 + 0 to < 32 + 0 weeks of gestation) and extremely preterm infants (EPT, < 28 + 0 weeks of gestation) and across weeks of gestation. METHODS: We retrospectively analyzed cMRIs at TEA of VPT and EPT infants born at a large tertiary center (2009-2018). We recorded and compared the incidences of BI, severe BI, intraventricular hemorrhage (IVH), periventricular hemorrhagic infarction (PVHI), cerebellar hemorrhage (CBH), cystic periventricular leukomalacia (cPVL), and punctate white matter lesions (PWML) between VPTs, EPTs, and across weeks of gestation. RESULTS: We included 507 preterm infants (VPT, 335/507 (66.1%); EPT, 172/507 (33.9%); mean gestational age (GA), 28 + 2 weeks (SD 2 + 2 weeks); male, 52.1%). BIs were found in 48.3% of the preterm infants (severe BI, 12.0%) and increased with decreasing GA. IVH, PVHI, CBH, cPVL, and PWML were seen in 16.8%, 0.8%, 10.5%, 3.4%, and 18.1%, respectively. EPT vs. VPT infants suffered more frequently from BI (59.3% vs. 42.7%, p < 0.001), severe BI (18.6% vs. 8.7%, p = 0.001), IVH (31.9% vs. 9.0%, p < 0.001), and CBH (18.0% vs. 6.6%, p < 0.001). CONCLUSION: Brain injuries are common cMRI findings among preterm infants with a higher incidence of EPT compared to VPT infants. These results may serve as reference values for clinical management and research. CLINICAL RELEVANCE STATEMENT: Our results with regard to gestational age might provide valuable clinical insights, serving as a key reference for parental advice, structured follow-up planning, and enhancing research and management within the Neonatal Intensive Care Unit. KEY POINTS: • Brain injury is a common cMRI finding in preterm infants seen in 48.3% individuals. • Extremely preterm compared to very preterm infants have higher brain injury incidences driven by brain injuries such as intraventricular and cerebellar hemorrhage. • Reference incidence values are crucial for parental advice and structured follow-up planning.

2.
Eur Radiol ; 34(2): 863-872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37615761

ABSTRACT

OBJECTIVES: To validate associations between MRI features and gene expression profiles in retinoblastoma, thereby evaluating the repeatability of radiogenomics in retinoblastoma. METHODS: In this retrospective multicenter cohort study, retinoblastoma patients with gene expression data and MRI were included. MRI features (scored blinded for clinical data) and matched genome-wide gene expression data were used to perform radiogenomic analysis. Expression data from each center were first separately processed and analyzed. The end product normalized expression values from different sites were subsequently merged by their Z-score to permit cross-sites validation analysis. The MRI features were non-parametrically correlated with expression of photoreceptorness (radiogenomic analysis), a gene expression signature informing on disease progression. Outcomes were compared to outcomes in a previous described cohort. RESULTS: Thirty-six retinoblastoma patients were included, 15 were female (42%), and mean age was 24 (SD 18) months. Similar to the prior evaluation, this validation study showed that low photoreceptorness gene expression was associated with advanced stage imaging features. Validated imaging features associated with low photoreceptorness were multifocality, a tumor encompassing the entire retina or entire globe, and a diffuse growth pattern (all p < 0.05). There were a number of radiogenomic associations that were also not validated. CONCLUSIONS: A part of the radiogenomic associations could not be validated, underlining the importance of validation studies. Nevertheless, cross-center validation of imaging features associated with photoreceptorness gene expression highlighted the capability radiogenomics to non-invasively inform on molecular subtypes in retinoblastoma. CLINICAL RELEVANCE STATEMENT: Radiogenomics may serve as a surrogate for molecular subtyping based on histopathology material in an era of eye-sparing retinoblastoma treatment strategies. KEY POINTS: • Since retinoblastoma is increasingly treated using eye-sparing methods, MRI features informing on molecular subtypes that do not rely on histopathology material are important. • A part of the associations between retinoblastoma MRI features and gene expression profiles (radiogenomics) were validated. • Radiogenomics could be a non-invasive technique providing information on the molecular make-up of retinoblastoma.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Female , Young Adult , Adult , Male , Retinoblastoma/diagnostic imaging , Retinoblastoma/genetics , Cohort Studies , Magnetic Resonance Imaging/methods , Transcriptome , Retinal Neoplasms/diagnostic imaging , Retinal Neoplasms/genetics
3.
Radiology ; 307(5): e222264, 2023 06.
Article in English | MEDLINE | ID: mdl-37191489

ABSTRACT

Background MYCN-amplified RB1 wild-type (MYCNARB1+/+) retinoblastoma is a rare but clinically important subtype of retinoblastoma due to its aggressive character and relative resistance to typical therapeutic approaches. Because biopsy is not indicated in retinoblastoma, specific MRI features might be valuable to identify children with this genetic subtype. Purpose To define the MRI phenotype of MYCNARB1+/+ retinoblastoma and evaluate the ability of qualitative MRI features to help identify this specific genetic subtype. Materials and Methods In this retrospective, multicenter, case-control study, MRI scans in children with MYCNARB1+/+ retinoblastoma and age-matched children with RB1-/- subtype retinoblastoma were included (case-control ratio, 1:4; scans acquired from June 2001 to February 2021; scans collected from May 2018 to October 2021). Patients with histopathologically confirmed unilateral retinoblastoma, genetic testing (RB1/MYCN status), and MRI scans were included. Associations between radiologist-scored imaging features and diagnosis were assessed with the Fisher exact test or Fisher-Freeman-Halton test, and Bonferroni-corrected P values were calculated. Results A total of 110 patients from 10 retinoblastoma referral centers were included: 22 children with MYCNARB1+/+ retinoblastoma and 88 control children with RB1-/- retinoblastoma. Children in the MYCNARB1+/+ group had a median age of 7.0 months (IQR, 5.0-9.0 months) (13 boys), while children in the RB1-/- group had a median age of 9.0 months (IQR, 4.6-13.4 months) (46 boys). MYCNARB1+/+ retinoblastomas were typically peripherally located (in 10 of 17 children; specificity, 97%; P < .001) and exhibited plaque or pleomorphic shape (in 20 of 22 children; specificity, 51%; P = .011) with irregular margins (in 16 of 22 children; specificity, 70%; P = .008) and extensive retina folding with vitreous enclosure (specificity, 94%; P < .001). MYCNARB1+/+ retinoblastomas showed peritumoral hemorrhage (in 17 of 21 children; specificity, 88%; P < .001), subretinal hemorrhage with a fluid-fluid level (in eight of 22 children; specificity, 95%; P = .005), and strong anterior chamber enhancement (in 13 of 21 children; specificity, 80%; P = .008). Conclusion MYCNARB1+/+ retinoblastomas show distinct MRI features that could enable early identification of these tumors. This may improve patient selection for tailored treatment in the future. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Rollins in this issue.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/diagnostic imaging , Retinoblastoma/genetics , N-Myc Proto-Oncogene Protein/genetics , Retrospective Studies , Case-Control Studies , Retinal Neoplasms/diagnostic imaging , Retinal Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , Retinoblastoma Binding Proteins/genetics
4.
Eur Radiol ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087063

ABSTRACT

OBJECTIVES: To assess the diagnostic accuracy of nerve thickening on MRI to predict early-stage postlaminar optic nerve invasion (PLONI) in retinoblastoma. Furthermore, this study aimed to incorporate measurements into a multiparametric model for radiological determination of PLONI. METHODS: In this retrospective multicenter case-control study, high-spatial-resolution 3D T2-weighted MR images were used to measure the distal optic nerve. Histopathology was the reference standard for PLONI. Two neuroradiologists independently measured the optic nerve width, height, and surface at 0, 3, and 5 mm from the most distal part of the optic nerve. Subsequently, PLONI was scored on contrast-enhanced T1-weighted and 3D T2-weighted images, blinded for clinical data. Optic nerve measurements with the highest diagnostic accuracy for PLONI were incorporated into a prediction model for radiological determination of PLONI. RESULTS: One hundred twenty-four retinoblastoma patients (median age, 22 months [range, 0-113], 58 female) were included, resulting in 25 retinoblastoma eyes with histopathologically proven PLONI and 206 without PLONI. ROC analysis of axial optic nerve width measured at 0 mm yielded the best area under the curve of 0.88 (95% confidence interval: 0.79, 0.96; p < 0.001). The optimal width cutoff was ≥ 2.215 mm, with a sensitivity of 84% (95% CI: 64, 95%) and specificity of 83% (95% CI: 75, 89%) for detecting PLONI. Combining width measurements with the suspicion of PLONI on MRI sequences resulted in a prediction model with an improved sensitivity and specificity of respectively up to 88% and 92%. CONCLUSION: Postlaminar optic nerve thickening can predict early-stage postlaminar optic nerve invasion in retinoblastoma. CLINICAL RELEVANCE STATEMENT: This study provides an additional tool for clinicians to help determine postlaminar optic nerve invasion, which is a risk factor for developing metastatic disease in retinoblastoma patients. KEY POINTS: • The diagnostic accuracy of contrast-enhanced MRI for detecting postlaminar optic nerve invasion is limited in retinoblastoma patients. • Optic nerve thickening can predict postlaminar optic nerve invasion. • A prediction model combining MRI features has a high sensitivity and specificity for detecting postlaminar optic nerve invasion.

5.
Ophthalmology ; 129(11): 1275-1286, 2022 11.
Article in English | MEDLINE | ID: mdl-35752210

ABSTRACT

PURPOSE: To investigate the prevalence and magnetic resonance imaging (MRI) phenotype of retinoblastoma-associated orbital cellulitis. Additionally, this study aimed to identify postlaminar optic nerve enhancement (PLONE) patterns differentiating between inflammation and tumor invasion. DESIGN: A monocenter cohort study assessed the prevalence of orbital cellulitis features on MRI in retinoblastoma patients. A multicenter case-control study compared MRI features of the retinoblastoma-associated orbital cellulitis cases with retinoblastoma controls. PARTICIPANTS: A consecutive retinoblastoma patient cohort of 236 patients (311 eyes) was retrospectively investigated. Subsequently, 30 retinoblastoma cases with orbital cellulitis were compared with 30 matched retinoblastoma controls without cellulitis. METHODS: In the cohort study, retinoblastoma MRI scans were scored on presence of inflammatory features. In the case-control study, MRI scans were scored on intraocular features and PLONE patterns. Postlaminar enhancement patterns were compared with histopathologic assessment of postlaminar tumor invasion. Interreader agreement was assessed, and exact tests with Bonferroni correction were adopted for statistical comparisons. MAIN OUTCOME MEASURES: Prevalence of retinoblastoma-associated orbital cellulitis on MRI was calculated. Frequency of intraocular MRI features was compared between cases and controls. Sensitivity and specificity of postlaminar optic nerve patterns for detection of postlaminar tumor invasion were assessed. RESULTS: The MRI prevalence of retinoblastoma-associated orbital cellulitis was 6.8% (16/236). Retinoblastoma with orbital cellulitis showed significantly more tumor necrosis, uveal abnormalities (inflammation, hemorrhage, and necrosis), lens luxation (all P < 0.001), and a larger eye size (P = 0.012). The inflammatory pattern of optic nerve enhancement (strong enhancement similar to adjacent choroid) was solely found in orbital cellulitis cases, of which none (0/16) showed tumor invasion on histopathology. Invasive pattern enhancement was found in both cases and controls, of which 50% (5/10) showed tumor invasion on histopathology. Considering these different enhancement patterns suggestive for either inflammation or tumor invasion increased specificity for detection of postlaminar tumor invasion in orbital cellulitis cases from 32% (95% confidence interval [CI], 16-52) to 89% (95% CI, 72-98). CONCLUSIONS: Retinoblastoma cases presenting with orbital cellulitis show MRI findings of a larger eye size, extensive tumor necrosis, uveal abnormalities, and lens luxation. Magnetic resonance imaging contrast-enhancement patterns within the postlaminar optic nerve can differentiate between tumor invasion and inflammatory changes.


Subject(s)
Optic Neuritis , Orbital Cellulitis , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/pathology , Retinal Neoplasms/pathology , Retrospective Studies , Orbital Cellulitis/diagnosis , Case-Control Studies , Cohort Studies , Neoplasm Invasiveness/pathology , Eye Enucleation , Magnetic Resonance Imaging/methods , Optic Nerve/pathology , Choroid/pathology , Inflammation/pathology , Necrosis/pathology
6.
Pediatr Blood Cancer ; 69(2): e29362, 2022 02.
Article in English | MEDLINE | ID: mdl-34606174

ABSTRACT

BACKGROUND: Eye-preserving therapy in retinoblastoma comprises systemic chemotherapy, but studies analyzing the efficacy of different chemotherapy regimens are scarce. METHODS: The efficacy and side effects of two different eye-preserving chemotherapy regimens containing either vincristine, etoposide, and carboplatin (VEC) or cyclophosphamide, vincristine, etoposide, and carboplatin (CyVEC) were compared in a prospective non-interventional observational study including children diagnosed with retinoblastoma between 2013 and 2019 in Germany and Austria. Event-free eye survival (EFES) and overall eye survival (OES) of all 164 eyes treated with both regimens and risk factors were investigated. RESULTS: The EFES after VEC (2-year EFES 72.3%) was higher than after CyVEC (2-year EFES 50.4%) (plogrank  < .001). The OES did not differ significantly between the two treatment groups (plogrank  = .77; 2-year OES VEC: 82.1% vs. CyVEC: 84.8%). Advanced International Classification of Retinoblastoma (ICRB) group was prognostic for a lower EFES (plogrank  < .0001; 2-year EFES ICRB A/B/C 71.3% vs. ICRB D/E 43.0%) and OES (plogrank  < .0001; 2-year OES ICRB A/B/C 93.1% vs. ICRB D/E 61.5%). The multivariate analysis showed that age at diagnosis older than 12 months and ICRB A/B/C were associated with better EFES. No second malignancies or ototoxicities were reported after a follow-up of median 3.1 years after diagnosis of retinoblastoma (range 0.1-6.9 years). CONCLUSIONS: Despite omitting cyclophosphamide, the EFES was higher after VEC chemotherapy that contains higher doses of carboplatin compared to CyVEC. The major risk factor for enucleation was advanced ICRB tumor grouping. Randomized clinical trials on efficacy and side effects of eye-preserving chemotherapy are required to tailor treatment protocols for retinoblastoma patients.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Retinal Neoplasms , Retinoblastoma , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin , Child , Cyclophosphamide , Drug-Related Side Effects and Adverse Reactions/drug therapy , Etoposide , Eye Enucleation , Humans , Prospective Studies , Retinal Neoplasms/drug therapy , Retinal Neoplasms/pathology , Retinoblastoma/drug therapy , Retinoblastoma/pathology , Vincristine
7.
Neuroradiology ; 63(3): 391-398, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32862237

ABSTRACT

PURPOSE: This study aims to determine local diagnostic reference levels (LDRLs) of intra-arterial chemotherapy (IAC) procedures of pediatric patients with retinoblastoma (RB) to provide data for establishing diagnostic reference levels (DRLs) in pediatric interventional radiology (IR). METHODS: In a retrospective study design, LDRLs and achievable dose (AD) were assessed for children undergoing superselective IAC for RB treatment. All procedures were performed at the flat-panel angiography systems (I) ArtisQ biplane (Siemens Healthineers) and (II) Allura Xper (Philips Healthcare). Patients were differentiated according to age (A1: 1-3 months; A2: 4-12 months; A3: 13-72 months; A4: 73 months-10 years; A5: > 10 years), sex, conducted or not-conducted chemotherapy. RESULTS: 248 neurointerventional procedures of 130 pediatric patients (median age 14.5 months, range 5-127 months) with RB (68 unilateral, 62 bilateral) could be included between January 2010 and March 2020. The following diagnostic reference values, AD, and mean values could be determined: (A2) DRL 3.9 Gy cm2, AD 2.9 Gy cm2, mean 3.5 Gy cm2; (A3) DRL 7.0 Gy cm2, AD 4.3 Gy cm2, mean 6.0 Gy cm2; (A4) DRL 14.5 Gy cm2, AD 10.7 Gy cm2, mean 10.8 Gy cm2; (A5) AD 8.8 Gy cm2, mean 8.8 Gy cm2. Kruskal-Wallis-test confirmed a significant dose difference between the examined age groups (A2-A5) (p < 0.001). There was no statistical difference considering sex (p = 0.076) and conducted or not-conducted chemotherapy (p = 0.627). A successful procedure was achieved in 207/248 cases. CONCLUSION: We report on radiation exposure during superselective IAC of a pediatric cohort at the German Retinoblastoma Referral Centre. Although an IAC formally represents a therapeutic procedure, our results confirm that radiation exposure lies within the exposure of a diagnostic interventional procedure. DRLs for superselective IAC are substantially lower compared with DRLs of more complex endovascular interventions.


Subject(s)
Radiation Exposure , Retinal Neoplasms , Retinoblastoma , Child , Child, Preschool , Diagnostic Reference Levels , Humans , Infant , Infant, Newborn , Infusions, Intra-Arterial , Retinal Neoplasms/diagnostic imaging , Retinal Neoplasms/drug therapy , Retinoblastoma/diagnostic imaging , Retinoblastoma/drug therapy , Retrospective Studies
8.
Radiology ; 288(2): 506-515, 2018 08.
Article in English | MEDLINE | ID: mdl-29714679

ABSTRACT

Purpose To identify associations between magnetic resonance (MR) imaging features and gene expression in retinoblastoma. Materials and Methods A retinoblastoma MR imaging atlas was validated by using anonymized MR images from referral centers in Essen, Germany, and Paris, France. Images were from 39 patients with retinoblastoma (16 male and 18 female patients [the sex in five patients was unknown]; age range, 5-90 months; inclusion criterion: pretreatment MR imaging). This atlas was used to compare MR imaging features with genome-wide messenger RNA (mRNA) expression data from 60 consecutive patients obtained from 1995 to 2012 (35 male patients [58%]; age range, 2-69 months; inclusion criteria: pretreatment MR imaging, genome-wide mRNA expression data available). Imaging pathway associations were analyzed by means of gene enrichment. In addition, imaging features were compared with a predefined gene expression signature of photoreceptorness. Statistical analysis was performed with generalized linear modeling of radiology traits on normalized log2-transformed expression values. P values were corrected for multiple hypothesis testing. Results Radiogenomic analysis revealed 1336 differentially expressed genes for qualitative imaging features (threshold P = .05 after multiple hypothesis correction). Loss of photoreceptorness gene expression correlated with advanced stage imaging features, including multiple lesions (P = .03) and greater eye size (P < .001). The number of lesions on MR images was associated with expression of MYCN (P = .04). A newly defined radiophenotype of diffuse-growing, plaque-shaped, multifocal tumors displayed overexpression of SERTAD3 (P = .003, P = .049, and P = .06, respectively), a protein that stimulates cell growth by activating the E2F network. Conclusion Radiogenomic biomarkers can potentially help predict molecular features, such as photoreceptorness loss, that indicate tumor progression. Results imply a possible role for radiogenomics in future staging and treatment decision making in retinoblastoma.


Subject(s)
Genes, Retinoblastoma/genetics , Magnetic Resonance Imaging/methods , Retinal Neoplasms/diagnostic imaging , Retinoblastoma/diagnostic imaging , Transcriptome/genetics , Child, Preschool , Female , Humans , Infant , Male , Reproducibility of Results , Retina/diagnostic imaging , Retinal Neoplasms/genetics , Retinoblastoma/genetics
9.
Eur J Pediatr ; 177(8): 1181-1189, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29789947

ABSTRACT

To improve the prediction of neurodevelopmental outcome in very preterm infants, this study used the combination of amplitude-integrated electroencephalography (aEEG) within the first 72 h of life and cranial magnetic resonance imaging (MRI) at term equivalent age. A single-center cohort of 38 infants born before 32 weeks of gestation was subjected to both investigations. Structural measurements were performed on MRI. Multiple regression analysis was used to identify independent factors including functional and structural brain measurements associated with outcome at a corrected age of 24 months. aEEG parameters significantly correlated with MRI measurements. Reduced deep gray matter volume was associated with low Burdjalov Score on day 3 (p < 0.0001) and day 1-3 (p = 0.0012). The biparietal width and the transcerebellar diameter were related to Burdjalov Score on day 1 (p = 0.0111; p = 0.0002). The final multiple regression analysis revealed independent predictors of neurodevelopmental outcome: intraventricular hemorrhage (p = 0.0060) and interhemispheric distance (p = 0.0052) for mental developmental index; Burdjalov Score day 1 (p = 0.0201) and interhemispheric distance (p = 0.0142) for psychomotor developmental index. CONCLUSION: Functional aEEG parameters were associated with altered brain maturation on MRI. The combination of aEEG and MRI contributes to the prediction of outcome at 24 months. What is Known: • Prematurity remains a risk factor for impaired neurodevelopment. • aEEG is used to measure brain activity in preterm infants and cranial MRI is performed to identify structural gray and white matter abnormalities with impact on neurodevelopmental outcome. What is New: • aEEG parameters observed within the first 72 h of life were associated with altered deep gray matter volumes, biparietal width, and transcerebellar diameter at term equivalent age. • The combination of aEEG and MRI contributes to the prediction of neurodevelopmental outcome at 2 years of corrected age in very preterm infants.


Subject(s)
Electroencephalography/methods , Infant, Premature, Diseases/diagnostic imaging , Magnetic Resonance Imaging , Neurodevelopmental Disorders/diagnostic imaging , Neuroimaging/methods , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Infant, Premature , Male , Prognosis , Retrospective Studies
11.
Radiology ; 279(3): 817-26, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26690907

ABSTRACT

Purpose To assess the correlation of intraocular retinoblastoma tumor size measured with magnetic resonance (MR) imaging in the prediction of histopathologically determined metastatic risk factors (postlaminar optic nerve invasion and massive choroidal invasion). Materials and Methods The ethics committee approved this retrospective multicenter study with a waiver of informed consent. The study population included 370 consecutive patients with retinoblastoma (375 eyes) who underwent baseline MR imaging, followed by primary enucleation from 1993 through 2014. Tumor sizes (maximum diameter and volume) were measured independently by two observers and correlated with histopathologic risk factors. Receiver operating characteristic curves were used to analyze the diagnostic accuracy of tumor size, and areas under the curve were calculated. Logistic regression analysis was performed to evaluate potential confounders. Results Receiver operating characteristic analysis of volume and diameter, respectively, yielded areas under the curve of 0.77 (95% confidence interval [CI]: 0.70, 0.85; P < .0001) and 0.78 (95% CI: 0.71, 0.85; P < .0001) for postlaminar optic nerve invasion (n = 375) and 0.67 (95% CI: 0.57, 0.77; P = .0020) and 0.70 (95% CI: 0.59, 0.80; P = .0004) for massive choroidal tumor invasion (n = 219). For the detection of co-occurring massive choroidal invasion and postlaminar optic nerve invasion (n = 219), volume and diameter showed areas under the curve of 0.81 (95% CI: 0.70, 0.91; P = .0032) and 0.83 (95% CI: 0.73, 0.93; P = .0016), respectively. Conclusion Intraocular tumor size shows a strong association with postlaminar optic nerve invasion and a moderate association with massive choroidal invasion. These findings provide diagnostic accuracy measures at different size cutoff levels, which could potentially be useful in a clinical setting, especially within the scope of the increasing use of eye-salvage treatment strategies. (©) RSNA, 2015 Online supplemental material is available for this article.


Subject(s)
Choroid Neoplasms/secondary , Magnetic Resonance Imaging , Optic Nerve Neoplasms/secondary , Retinal Neoplasms/diagnostic imaging , Retinal Neoplasms/pathology , Retinoblastoma/diagnostic imaging , Retinoblastoma/pathology , Female , Forecasting , Humans , Male , Neoplasm Invasiveness , Regression Analysis , Retrospective Studies , Risk Factors
12.
Ophthalmology ; 123(3): 635-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26692298

ABSTRACT

PURPOSE: Orbital tumor recurrence is a rare but serious complication in children with retinoblastoma, leading to a high risk of metastasis and death. Therefore, we assume that these recurrences have to be detected and treated as early as possible. Preliminary studies used magnetic resonance imaging (MRI) to evaluate postsurgical findings in the orbit. In this study, we assessed the diagnostic accuracy of high-resolution MRI to detect orbital tumor recurrence in children with retinoblastoma in a large study cohort. DESIGN: Consecutive retrospective study (2007-2013) assessing MRI findings after enucleation. PARTICIPANTS: A total of 103 MRI examinations of 55 orbits (50 children, 27 male/23 female, mean age 16.3±12.4 months) with a median time of 8 months (range, 0-93) after enucleation for retinoblastoma. METHODS: High-resolution MRI using orbital surface coils was performed on 1.5 Tesla MRI systems to assess abnormal orbital findings. MAIN OUTCOME MEASURES: Five European experts in retinoblastoma imaging evaluated the MRI examinations regarding the presence of abnormal orbital gadolinium enhancement and judged them as "definitive tumor," "suspicious of tumor," "postsurgical condition/scar formation," or "without pathologic findings." The findings were correlated to histopathology (if available), MRI, and clinical follow-up. RESULTS: Abnormal orbital enhancement was a common finding after enucleation (100% in the first 3 months after enucleation, 64.3% >3 years after enucleation). All histopathologically confirmed tumor recurrences (3 of 55 orbits, 5.5%) were correctly judged as "definitive tumor" in MRI. Two orbits from 2 children rated as "suspicious of tumor" received intravenous chemotherapy without histopathologic confirmation; further follow-up (67 and 47 months) revealed no sign of tumor recurrence. In 90.2%, no tumor was suspected on MRI, which was clinically confirmed during follow-up (median follow-up after enucleation, 45 months; range, 8-126). CONCLUSIONS: High-resolution MRI with orbital surface coils may reliably distinguish between common postsurgical contrast enhancement and orbital tumor recurrence, and therefore may be a useful tool to evaluate orbital tumor recurrence after enucleation in children with retinoblastoma. We recommend high-resolution MRI as a potential screening tool for the orbit in children with retinoblastoma to exclude tumor recurrence, especially in high-risk patients within the critical first 2 years after enucleation.


Subject(s)
Eye Enucleation , Magnetic Resonance Imaging , Neoplasm Recurrence, Local/diagnosis , Orbital Neoplasms/diagnosis , Retinal Neoplasms/surgery , Retinoblastoma/surgery , Child, Preschool , Contrast Media , Female , Humans , Infant , Male , Orbital Neoplasms/secondary , Reproducibility of Results , Retinal Neoplasms/pathology , Retinoblastoma/secondary , Retrospective Studies
13.
Neuroradiology ; 58(7): 713-21, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27130617

ABSTRACT

INTRODUCTION: Pineal cysts are a common incidental finding on brain MRI with resulting difficulties in differentiation between normal glands and pineal pathologies. The aim of this study was to assess the size and morphology of the cystic pineal gland in children (0-5 years) and compare the findings with published pineoblastoma cases. METHODS: In this retrospective multicenter study, 257 MR examinations (232 children, 0-5 years) were evaluated regarding pineal gland size (width, height, planimetric area, maximal cyst(s) size) and morphology. We performed linear regression analysis with 99 % prediction intervals of gland size versus age for the size parameters. Results were compared with a recent meta-analysis of pineoblastoma by de Jong et al. RESULTS: Follow-up was available in 25 children showing stable cystic findings in 48 %, cyst size increase in 36 %, and decrease in 16 %. Linear regression analysis gave 99 % upper prediction bounds of 10.8 mm, 10.9 mm, 7.7 mm and 66.9 mm(2), respectively, for cyst size, width, height, and area. The slopes (size increase per month) of each parameter were 0.030, 0.046, 0.021, and 0.25, respectively. Most of the pineoblastomas showed a size larger than the 99 % upper prediction margin, but with considerable overlap between the groups. CONCLUSION: We presented age-adapted normal values for size and morphology of the cystic pineal gland in children aged 0 to 5 years. Analysis of size is helpful in discriminating normal glands from cystic pineal pathologies such as pineoblastoma. We also presented guidelines for the approach of a solid or cystic pineal gland in hereditary retinoblastoma patients.


Subject(s)
Brain Neoplasms/diagnostic imaging , Central Nervous System Cysts/diagnostic imaging , Magnetic Resonance Imaging/methods , Pineal Gland/diagnostic imaging , Pinealoma/diagnostic imaging , Central Nervous System Cysts/pathology , Child, Preschool , Diagnosis, Differential , Europe , Female , Humans , Infant , Infant, Newborn , Male , Pineal Gland/pathology , Pinealoma/pathology , Reference Values , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity
14.
Neuroradiology ; 58(7): 705-12, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27130616

ABSTRACT

INTRODUCTION: Differentiation between normal solid (non-cystic) pineal glands and pineal pathologies on brain MRI is difficult. The aim of this study was to assess the size of the solid pineal gland in children (0-5 years) and compare the findings with published pineoblastoma cases. METHODS: We retrospectively analyzed the size (width, height, planimetric area) of solid pineal glands in 184 non-retinoblastoma patients (73 female, 111 male) aged 0-5 years on MRI. The effect of age and gender on gland size was evaluated. Linear regression analysis was performed to analyze the relation between size and age. Ninety-nine percent prediction intervals around the mean were added to construct a normal size range per age, with the upper bound of the predictive interval as the parameter of interest as a cutoff for normalcy. RESULTS: There was no significant interaction of gender and age for all the three pineal gland parameters (width, height, and area). Linear regression analysis gave 99 % upper prediction bounds of 7.9, 4.8, and 25.4 mm(2), respectively, for width, height, and area. The slopes (size increase per month) of each parameter were 0.046, 0.023, and 0.202, respectively. Ninety-three percent (95 % CI 66-100 %) of asymptomatic solid pineoblastomas were larger in size than the 99 % upper bound. CONCLUSION: This study establishes norms for solid pineal gland size in non-retinoblastoma children aged 0-5 years. Knowledge of the size of the normal pineal gland is helpful for detection of pineal gland abnormalities, particularly pineoblastoma.


Subject(s)
Brain Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Pineal Gland/diagnostic imaging , Pinealoma/diagnostic imaging , Child, Preschool , Diagnosis, Differential , Europe , Female , Humans , Infant , Infant, Newborn , Male , Pineal Gland/pathology , Pinealoma/pathology , Reference Values , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity
15.
Neuroradiology ; 57(8): 815-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25964026

ABSTRACT

INTRODUCTION: High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil. METHODS: One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard. RESULTS: Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion). CONCLUSION: The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up.


Subject(s)
Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Retinal Neoplasms/pathology , Retinoblastoma/pathology , Retinoblastoma/secondary , Transducers , Equipment Design , Equipment Failure Analysis , Female , Humans , Infant , Male , Reproducibility of Results , Risk Assessment/methods , Sensitivity and Specificity
16.
Neuroradiology ; 57(8): 805-14, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26041632

ABSTRACT

INTRODUCTION: A reliable detection of metastatic risk factors is important for children with retinoblastoma to choose the right therapeutic regimen. First studies using high-resolution magnetic resonance imaging (MRI) with orbit surface coils were promising. The aim of this study was therefore to evaluate the ability of high-resolution MRI to detect metastatic and especially advanced metastatic risk factors in a large group of children with retinoblastoma. METHODS: One hundred forty-three consecutive children with retinoblastoma (148 enucleated eyes, 64 girls, 79 boys, mean age 19.7 ± 15.3) who received pretherapeutical high-resolution MRI with orbit surface coils on 1.5 T MR scanner systems between 2007 and 2012 and subsequent primary enucleation within 14 days were included in this retrospective study. Image analysis was performed by two neuroradiologists experienced in ocular imaging in consensus. Histopathology served as gold standard. RESULTS: Sensitivity/specificity for the detection of metastatic risk factors using high-resolution MRI with orbit surface coils were 60 %/88.7 % for postlaminar optic nerve infiltration, 65.5 %/95.6 % for choroidal invasion, 100 %/99.3 % for scleral invasion, and 100 %/100 % for peribulbar fat invasion, respectively. The results increased for the detection of advanced metastatic risk factors, 81.8 %/89.1 % for deep postlaminar optic nerve infiltration, 70.6 %/97.6 % for massive choroidal invasion. CONCLUSIONS: High-resolution MRI is clinically valuable for the detection of metastatic, especially of advanced metastatic risk factors in children with retinoblastoma.


Subject(s)
Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Retinal Neoplasms/pathology , Retinoblastoma/pathology , Retinoblastoma/secondary , Transducers , Equipment Design , Equipment Failure Analysis , Female , Humans , Infant , Male , Reproducibility of Results , Risk Assessment/methods , Sensitivity and Specificity
17.
Pediatr Cardiol ; 35(5): 771-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24343730

ABSTRACT

Previous studies showed the reliability of cardiac magnetic resonance imaging (cMRI) in the quantification of aortic valve stenosis in adults. The aim of this retrospective study was to assess the ability of cMRI in the quantification of congenital aortic valve stenosis (CAS) in children. Nineteen patients (mean age 14.0 ± 3.2 years, 15 boys and 4 girls) with CAS were imaged by cMRI and transthoracic echocardiography (TTE). cMRI was performed on a 1.5-Tesla MR scanner (Magnetom Avanto; Siemens Healthcare, Erlangen, Germany) using cine steady-state free precession sequences for the assessment of the aortic valve area (AVA) by MR planimetry and left-ventricular function. Phase-contrast measurement was used in cMRI to assess peak flow velocity above the aortic valve. A positive correlation was found between maximum systolic pressure gradient (MPG) as assessed by cMRI and TTE (28.9 ± 21.2 vs. 41.3 ± 22.7 mmHg, r = 0.84, p = 0.001) with a mean underestimation of 12.4 mmHg by cMRI. Only a weak correlation could be observed between AVA by cMRI and MPG at the aortic valve by TTE (r = -0.50, p = 0.029) and cMRI (r = -0.27, p = 0.40). Furthermore, a positive correlation between myocardial mass (cMRI) and MPG (TTE, r = 0.57, p = 0.01), but not between myocardial mass (cMRI) and AVA (cMRI, r = 0.07, p = 0.77), was found. The assessment of MPG by cMRI in patients with CAS is feasible with a trend toward underestimatation compared with TTE. Moreover, MPG seems to be a more accurate parameter than AVA regarding the prediction of myocardial hypertrophy.


Subject(s)
Aortic Valve Stenosis/congenital , Aortic Valve Stenosis/diagnosis , Aortic Valve/physiopathology , Echocardiography/methods , Magnetic Resonance Imaging, Cine/methods , Adolescent , Aortic Valve Stenosis/physiopathology , Child , Female , Heart/physiopathology , Humans , Male , Reproducibility of Results , Retrospective Studies , Ventricular Function, Left
18.
Cancers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791976

ABSTRACT

This retrospective multicenter study examines therapy-induced orbital and ocular MRI findings in retinoblastoma patients following selective intra-arterial chemotherapy (SIAC) and quantifies the impact of SIAC on ocular and optic nerve growth. Patients were selected based on medical chart review, with inclusion criteria requiring the availability of posttreatment MR imaging encompassing T2-weighted and T1-weighted images (pre- and post-intravenous gadolinium administration). Qualitative features and quantitative measurements were independently scored by experienced radiologists, with deep learning segmentation aiding total eye volume assessment. Eyes were categorized into three groups: eyes receiving SIAC (Rb-SIAC), eyes treated with other eye-saving methods (Rb-control), and healthy eyes. The most prevalent adverse effects post-SIAC were inflammatory and vascular features, with therapy-induced contrast enhancement observed in the intraorbital optic nerve segment in 6% of patients. Quantitative analysis revealed significant growth arrest in Rb-SIAC eyes, particularly when treatment commenced ≤ 12 months of age. Optic nerve atrophy was a significant complication in Rb-SIAC eyes. In conclusion, this study highlights the vascular and inflammatory adverse effects observed post-SIAC in retinoblastoma patients and demonstrates a negative impact on eye and optic nerve growth, particularly in children treated ≤ 12 months of age, providing crucial insights for clinical management and future research.

19.
Neuroradiology ; 55(10): 1241-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23921418

ABSTRACT

INTRODUCTION: Several studies have revealed the importance of brain imaging in term and preterm infants. The aim of this retrospective study was to review safety, handling, and image quality of MR brain imaging using a new 3 Tesla MR-compatible incubator. METHODS: Between 02/2011 and 05/2012 100 brain MRIs (84 infants, mean gestational age 32.2 ± 4.7 weeks, mean postmenstrual age at imaging 40.6 ± 3.4 weeks) were performed using a 3 Tesla MR-compatible incubator with dedicated, compatible head coil. Seventeen examinations (13 infants, mean gestational age 35.1 ± 5.4 weeks, mean postmenstrual age at imaging 47.8 ± 7.4 weeks) with a standard head coil served as a control. Image analysis was performed by a neuroradiologist and a pediatric radiologist in consensus. RESULTS: All but two patients with known apnea were transferred to the MR unit and scanned without problems. Handling was easier and faster with the incubator; relevant motion artifacts (5.9 vs. 10.8%) and the need for repetitive sedation (43.0 vs. 86.7%) were reduced. Considering only images not impaired by motion artifacts, image quality (4.8 ± 0.4 vs. 4.3 ± 0.8, p = 0.047) and spatial resolution (4.7 ± 0.4 vs. 4.2 ± 0.6, p = 0.011) of T2-weighted images were scored significantly higher in patients imaged with the incubator. SNR increased significantly (171.6 ± 54.5 vs. 80.5 ± 19.8, p < 0.001) with the use of the incubator. CONCLUSION: Infants can benefit from the use of a 3 Tesla MR-compatible incubator because of its safety, easier, and faster handling (compared to standard imaging) and possibility to obtain high-quality MR images even in unstable patients.


Subject(s)
Brain Diseases/pathology , Brain/pathology , Incubators, Infant , Magnetic Resonance Imaging/instrumentation , Patient Positioning/instrumentation , Equipment Design , Equipment Failure Analysis , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging/adverse effects , Male , Reproducibility of Results , Sensitivity and Specificity
20.
Pediatr Radiol ; 43(6): 716-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23314985

ABSTRACT

BACKGROUND: Gadolinium-enhanced T1-weighted MRI without fat saturation has been recommended for assessment of retinoblastoma. OBJECTIVE: The purpose of this study was to compare diagnostic image quality without and with fat saturation following gadolinium administration. MATERIALS AND METHODS: High-resolution gadolinium-enhanced T1-weighted sequences with and without fat saturation performed in children with subsequently histopathologically confirmed retinoblastoma were included. Image analysis (image quality [1 = poor, 2 = moderate, 3 = good], anatomical detail depiction, tumour extension) was performed by two neuroradiologists in consensus. Enhancement was scored and measured. Signal- and contrast-to-noise ratios were calculated. Image-assessed tumour invasiveness was compared to histopathological findings. Paired sample t-test was used for statistical analysis. RESULTS: Thirty-six children (mean age, 19.0 ± 16.8 [SD] months) were included. Image quality and anatomical detail depiction were significantly better without fat saturation (P < 0.001). Tumour enhancement was rated higher with fat saturation (P < 0.001). Fat saturation improved detection of (post-)laminar optic nerve infiltration. Detection of choroidal invasion was improved without fat saturation. Combining both sequences was best in the assessment of tumour extension (sensitivity/specificity for (post-)laminar optic nerve infiltration, 75.0%/100.0%, and for choroidal invasion, 87.5%/85.7%). CONCLUSION: Combined T1-weighted spin-echo imaging with and without fat saturation improved the image quality for assessment of invasiveness of retinoblastoma.


Subject(s)
Adipose Tissue/pathology , Gadolinium , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Retinal Neoplasms/pathology , Retinoblastoma/pathology , Subtraction Technique , Child , Child, Preschool , Contrast Media , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL