Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Genet ; 143(2): 185-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302665

ABSTRACT

PURPOSE: Miscarriage, often resulting from a variety of genetic factors, is a common pregnancy outcome. Preconception genetic carrier screening (PGCS) identifies at-risk partners for newborn genetic disorders; however, PGCS panels currently lack miscarriage-related genes. In this study, we evaluated the potential impact of both known and candidate genes on prenatal lethality and the effectiveness of PGCS in diverse populations. METHODS: We analyzed 125,748 human exome sequences and mouse and human gene function databases. Our goals were to identify genes crucial for human fetal survival (lethal genes), to find variants not present in a homozygous state in healthy humans, and to estimate carrier rates of known and candidate lethal genes in various populations and ethnic groups. RESULTS: This study identified 138 genes in which heterozygous lethal variants are present in the general population with a frequency of 0.5% or greater. Screening for these 138 genes could identify 4.6% (in the Finnish population) to 39.8% (in the East Asian population) of couples at risk of miscarriage. This explains the cause of pregnancy loss in approximately 1.1-10% of cases affected by biallelic lethal variants. CONCLUSION: This study has identified a set of genes and variants potentially associated with lethality across different ethnic backgrounds. The variation of these genes across ethnic groups underscores the need for a comprehensive, pan-ethnic PGCS panel that includes genes related to miscarriage.


Subject(s)
Abortion, Spontaneous , Female , Infant, Newborn , Humans , Pregnancy , Animals , Mice , Abortion, Spontaneous/genetics , Genes, Lethal , Genetic Carrier Screening , Ethnicity , Computational Biology
2.
FASEB J ; 37(9): e23130, 2023 09.
Article in English | MEDLINE | ID: mdl-37641572

ABSTRACT

Endometriosis is a common estrogen-dependent disorder wherein uterine lining tissue (endometrium) is found mainly in the pelvis where it causes inflammation, chronic pelvic pain, pain with intercourse and menses, and infertility. Recent evidence also supports a systemic inflammatory component that underlies associated co-morbidities, e.g., migraines and cardiovascular and autoimmune diseases. Genetics and environment contribute significantly to disease risk, and with the explosion of omics technologies, underlying mechanisms of symptoms are increasingly being elucidated, although novel and effective therapeutics for pain and infertility have lagged behind these advances. Moreover, there are stark disparities in diagnosis, access to care, and treatment among persons of color and transgender/nonbinary identity, socioeconomically disadvantaged populations, and adolescents, and a disturbing low awareness among health care providers, policymakers, and the lay public about endometriosis, which, if left undiagnosed and under-treated can lead to significant fibrosis, infertility, depression, and markedly diminished quality of life. This review summarizes endometriosis epidemiology, compelling evidence for its pathogenesis, mechanisms underlying its pathophysiology in the age of precision medicine, recent biomarker discovery, novel therapeutic approaches, and issues around reproductive justice for marginalized populations with this disorder spanning the past 100 years. As we enter the next revolution in health care and biomedical research, with rich molecular and clinical datasets, single-cell omics, and population-level data, endometriosis is well positioned to benefit from data-driven research leveraging computational and artificial intelligence approaches integrating data and predicting disease risk, diagnosis, response to medical and surgical therapies, and prognosis for recurrence.


Subject(s)
Chronic Pain , Endometriosis , Adolescent , Humans , Female , Aged, 80 and over , Precision Medicine , Endometriosis/epidemiology , Endometriosis/therapy , Longevity , Artificial Intelligence , Quality of Life , Reproductive Health
3.
PLoS Comput Biol ; 19(5): e1011050, 2023 05.
Article in English | MEDLINE | ID: mdl-37146076

ABSTRACT

Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.


Subject(s)
COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , SARS-CoV-2 , Atorvastatin/pharmacology , Bayes Theorem , Endothelial Cells , Simvastatin/pharmacology , Simvastatin/therapeutic use , Drug Repositioning , Medical Records
4.
Blood ; 137(12): 1679-1689, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33512420

ABSTRACT

Lung injury after pediatric allogeneic hematopoietic cell transplantation (HCT) is a common and disastrous complication that threatens long-term survival. To develop strategies to prevent lung injury, novel tools are needed to comprehensively assess lung health in HCT candidates. Therefore, this study analyzed biospecimens from 181 pediatric HCT candidates who underwent routine pre-HCT bronchoalveolar lavage (BAL) at the University Medical Center Utrecht between 2005 and 2016. BAL fluid underwent metatranscriptomic sequencing of microbial and human RNA, and unsupervised clustering and generalized linear models were used to associate microbiome gene expression data with the development of post-HCT lung injury. Microbe-gene correlations were validated using a geographically distinct cohort of 18 pediatric HCT candidates. The cumulative incidence of post-HCT lung injury varied significantly according to 4 pre-HCT pulmonary metatranscriptome clusters, with the highest incidence observed in children with pre-HCT viral enrichment and innate immune activation, as well as in children with profound microbial depletion and concomitant natural killer/T-cell activation (P < .001). In contrast, children with pre-HCT pulmonary metatranscriptomes containing diverse oropharyngeal taxa and lacking inflammation rarely developed post-HCT lung injury. In addition, activation of epithelial-epidermal differentiation, mucus production, and cellular adhesion were associated with fatal post-HCT lung injury. In a separate validation cohort, associations among pulmonary respiratory viral load, oropharyngeal taxa, and pulmonary gene expression were recapitulated; the association with post-HCT lung injury needs to be validated in an independent cohort. This analysis suggests that assessment of the pre-HCT BAL fluid may identify high-risk pediatric HCT candidates who may benefit from pathobiology-targeted interventions.


Subject(s)
Hematopoietic Stem Cell Transplantation/adverse effects , Lung Injury/etiology , Transcriptome , Adolescent , Adult , Child , Child, Preschool , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Humans , Immunity, Innate , Infant , Lung/metabolism , Lung Injury/genetics , Lung Injury/immunology , Male , Transplantation, Homologous/adverse effects , Young Adult
5.
PLoS Comput Biol ; 18(1): e1009719, 2022 01.
Article in English | MEDLINE | ID: mdl-35100256

ABSTRACT

Artificial Intelligence (AI) has the power to improve our lives through a wide variety of applications, many of which fall into the healthcare space; however, a lack of diversity is contributing to limitations in how broadly AI can help people. The UCSF AI4ALL program was established in 2019 to address this issue by targeting high school students from underrepresented backgrounds in AI, giving them a chance to learn about AI with a focus on biomedicine, and promoting diversity and inclusion. In 2020, the UCSF AI4ALL three-week program was held entirely online due to the COVID-19 pandemic. Thus, students participated virtually to gain experience with AI, interact with diverse role models in AI, and learn about advancing health through AI. Specifically, they attended lectures in coding and AI, received an in-depth research experience through hands-on projects exploring COVID-19, and engaged in mentoring and personal development sessions with faculty, researchers, industry professionals, and undergraduate and graduate students, many of whom were women and from underrepresented racial and ethnic backgrounds. At the conclusion of the program, the students presented the results of their research projects at the final symposium. Comparison of pre- and post-program survey responses from students demonstrated that after the program, significantly more students were familiar with how to work with data and to evaluate and apply machine learning algorithms. There were also nominally significant increases in the students' knowing people in AI from historically underrepresented groups, feeling confident in discussing AI, and being aware of careers in AI. We found that we were able to engage young students in AI via our online training program and nurture greater diversity in AI. This work can guide AI training programs aspiring to engage and educate students entirely online, and motivate people in AI to strive towards increasing diversity and inclusion in this field.


Subject(s)
Artificial Intelligence , Biomedical Research , Computational Biology , Cultural Diversity , Mentoring , Adolescent , Biomedical Research/education , Biomedical Research/organization & administration , Computational Biology/education , Computational Biology/organization & administration , Female , Humans , Male , Minority Groups , Students
6.
J Immunol ; 207(10): 2445-2455, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34654689

ABSTRACT

Preterm labor (PTL) is the leading cause of neonatal morbidity and mortality worldwide. Whereas many studies have investigated the maternal immune responses that cause PTL, fetal immune cell activation has recently been raised as an important contributor to the pathogenesis of PTL. In this study, we analyzed lymphocyte receptor repertoires in maternal and cord blood from 14 term and 10 preterm deliveries, hypothesizing that the high prevalence of infection in patients with PTL may result in specific changes in the T cell and B cell repertoires. We analyzed TCR ß-chain (TCR-ß) and IgH diversity, CDR3 lengths, clonal sharing, and preferential usage of variable and joining gene segments. Both TCR-ß and IgH repertoires had shorter CDR3s compared with those in maternal blood. In cord blood samples, we found that CDR3 lengths correlated with gestational age, with shorter CDR3s in preterm neonates suggesting a less developed repertoire. Preterm cord blood displayed preferential usage of a number of genes. In preterm pregnancies, we observed significantly higher prevalence of convergent clones between mother/baby pairs than in term pregnancies. Together, our results suggest the repertoire of preterm infants displays a combination of immature features and convergence with maternal TCR-ß clones compared with that of term infants. The higher clonal convergence in PTL could represent mother and fetus both responding to a shared stimulus like an infection. These data provide a detailed analysis of the maternal-fetal immune repertoire in term and preterm patients and contribute to a better understanding of neonate immune repertoire development and potential changes associated with PTL.


Subject(s)
Immunoglobulin Heavy Chains/immunology , Infant, Newborn/immunology , Obstetric Labor, Premature/immunology , Premature Birth/immunology , Receptors, Antigen, T-Cell/immunology , Complementarity Determining Regions/immunology , Female , Humans , Infant, Premature/immunology , Pregnancy
7.
BMC Med ; 20(1): 333, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36167547

ABSTRACT

BACKGROUND: Identifying pregnancies at risk for preterm birth, one of the leading causes of worldwide infant mortality, has the potential to improve prenatal care. However, we lack broadly applicable methods to accurately predict preterm birth risk. The dense longitudinal information present in electronic health records (EHRs) is enabling scalable and cost-efficient risk modeling of many diseases, but EHR resources have been largely untapped in the study of pregnancy. METHODS: Here, we apply machine learning to diverse data from EHRs with 35,282 deliveries to predict singleton preterm birth. RESULTS: We find that machine learning models based on billing codes alone can predict preterm birth risk at various gestational ages (e.g., ROC-AUC = 0.75, PR-AUC = 0.40 at 28 weeks of gestation) and outperform comparable models trained using known risk factors (e.g., ROC-AUC = 0.65, PR-AUC = 0.25 at 28 weeks). Examining the patterns learned by the model reveals it stratifies deliveries into interpretable groups, including high-risk preterm birth subtypes enriched for distinct comorbidities. Our machine learning approach also predicts preterm birth subtypes (spontaneous vs. indicated), mode of delivery, and recurrent preterm birth. Finally, we demonstrate the portability of our approach by showing that the prediction models maintain their accuracy on a large, independent cohort (5978 deliveries) from a different healthcare system. CONCLUSIONS: By leveraging rich phenotypic and genetic features derived from EHRs, we suggest that machine learning algorithms have great potential to improve medical care during pregnancy. However, further work is needed before these models can be applied in clinical settings.


Subject(s)
Premature Birth , Algorithms , Electronic Health Records , Female , Gestational Age , Humans , Infant, Newborn , Machine Learning , Pregnancy , Premature Birth/diagnosis , Premature Birth/epidemiology
8.
Bioinformatics ; 36(22-23): 5535-5536, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33313640

ABSTRACT

SUMMARY: A visualization suite for major forms of bulk and single-cell RNAseq data in R. dittoSeq is color blindness-friendly by default, robustly documented to power ease-of-use and allows highly customizable generation of both daily-use and publication-quality figures. AVAILABILITY AND IMPLEMENTATION: dittoSeq is an R package available through Bioconductor via an open source MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

9.
Environ Res ; 215(Pt 1): 114158, 2022 12.
Article in English | MEDLINE | ID: mdl-36049512

ABSTRACT

BACKGROUND: Exposure to environmental chemicals during pregnancy adversely affects maternal and infant health, and identifying socio-demographic differences in exposures can inform contributions to health inequities. METHODS: We recruited 294 demographically diverse pregnant participants in San Francisco from the Mission Bay/Moffit Long (MB/ML) hospitals, which serve a primarily higher income population, and Zuckerberg San Francisco General Hospital (ZSFGH), which serves a lower income population. We collected maternal and cord sera, which we screened for 2420 unique formulas and their isomers using high-resolution mass spectrometry using LC-QTOF/MS. We assessed differences in chemical abundances across socioeconomic and demographic groups using linear regression adjusting for false discovery rate. RESULTS: Our participants were racially diverse (31% Latinx, 16% Asian/Pacific Islander, 5% Black, 5% other or multi-race, and 43% white). A substantial portion experienced financial strain (28%) and food insecurity (20%) during pregnancy. We observed significant abundance differences in maternal (9 chemicals) and cord sera (39 chemicals) between participants who delivered at the MB/ML hospitals versus ZSFGH. Of the 39 chemical features differentially detected in cord blood, 18 were present in pesticides, one per- or poly-fluoroalkyl substance (PFAS), 21 in plasticizers, 24 in cosmetics, and 17 in pharmaceuticals; 4 chemical features had unknown sources. A chemical feature annotated as 2,4-dichlorophenol had higher abundances among Latinx compared to white participants, those delivering at ZSFGH compared to MB/ML, those with food insecurity, and those with financial strain. Post-hoc QTOF analyses indicated the chemical feature was either 2,4-dichlorophenol or 2,5-dichlorophenol, both of which have potential endocrine-disrupting effects. CONCLUSIONS: Chemical exposures differed between delivery hospitals, likely due to underlying social conditions faced by populations served. Differential exposures to 2,4-dichlorophenol or 2,5-dichlorophenol may contribute to disparities in adverse outcomes.


Subject(s)
Environmental Pollutants , Fluorocarbons , Pesticides , Chlorophenols , Demography , Female , Humans , Infant, Newborn , Pharmaceutical Preparations , Phenols , Plasticizers , Pregnancy , Pregnant Women , Socioeconomic Factors
10.
Proc Natl Acad Sci U S A ; 116(37): 18517-18527, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31455730

ABSTRACT

How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77-a marker of T cell antigen receptor (TCR) signaling-to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)-producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)-a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/immunology , Synovial Membrane/immunology , Th17 Cells/immunology , Adult , Aged , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/surgery , Biopsy , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Down-Regulation , Female , Genes, Reporter/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Interleukin-17/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Suppressor of Cytokine Signaling 3 Protein/immunology , Suppressor of Cytokine Signaling 3 Protein/metabolism , Synovectomy , Synovial Membrane/cytology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Th17 Cells/metabolism , Zymosan/administration & dosage , Zymosan/immunology
11.
Environ Sci Technol ; 55(8): 5037-5049, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33726493

ABSTRACT

Our proof-of-concept study develops a suspect screening workflow to identify and prioritize potentially ubiquitous chemical exposures in matched maternal/cord blood samples, a critical period of development for future health risks. We applied liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF/MS) to perform suspect screening for ∼3500 industrial chemicals on pilot data from 30 paired maternal and cord serum samples (n = 60). We matched 662 suspect features in positive ionization mode and 788 in negative ionization mode (557 unique formulas overall) to compounds in our database, and selected 208 of these for fragmentation analysis based on detection frequency, correlation in feature intensity between maternal and cord samples, and peak area differences by demographic characteristics. We tentatively identified 73 suspects through fragmentation spectra matching and confirmed 17 chemical features (15 unique compounds) using analytical standards. We tentatively identified 55 compounds not previously reported in the literature, the majority which have limited to no information about their sources or uses. Examples include (i) 1-(1-acetyl-2,2,6,6-tetramethylpiperidin-4-yl)-3-dodecylpyrrolidine-2,5-dione (known high production volume chemical) (ii) methyl perfluoroundecanoate and 2-perfluorooctyl ethanoic acid (two PFAS compounds); and (iii) Sumilizer GA 80 (plasticizer). Thus, our workflow demonstrates an approach to evaluating the chemical exposome to identify and prioritize chemical exposures during a critical period of development.


Subject(s)
Environmental Monitoring , Chromatography, Liquid , Humans , Infant, Newborn , Mass Spectrometry , San Francisco
12.
Environ Sci Technol ; 55(15): 10542-10557, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34260856

ABSTRACT

Recent technological advances in mass spectrometry have enabled us to screen biological samples for a very broad spectrum of chemical compounds allowing us to more comprehensively characterize the human exposome in critical periods of development. The goal of this study was three-fold: (1) to analyze 590 matched maternal and cord blood samples (total 295 pairs) using non-targeted analysis (NTA); (2) to examine the differences in chemical abundance between maternal and cord blood samples; and (3) to examine the associations between exogenous chemicals and endogenous metabolites. We analyzed all samples with high-resolution mass spectrometry using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in both positive and negative electrospray ionization modes (ESI+ and ESI-) and in soft ionization (MS) and fragmentation (MS/MS) modes for prioritized features. We confirmed 19 unique compounds with analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching, and we annotated 98 compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in cord samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of these relationships was an association between three poly and perfluoroalkyl substances (PFASs) and endogenous fatty acids in both the maternal and cord samples indicating potential interactions between PFASs and fatty acid regulating proteins.


Subject(s)
Exposome , Tandem Mass Spectrometry , Chromatography, Liquid , Female , Humans , Pregnancy , Spectrometry, Mass, Electrospray Ionization
13.
Mol Pain ; 16: 1744806920936502, 2020.
Article in English | MEDLINE | ID: mdl-32586194

ABSTRACT

BACKGROUND: Paclitaxel is an important chemotherapeutic agent for the treatment of breast cancer. Paclitaxel-induced peripheral neuropathy (PIPN) is a major dose-limiting toxicity that can persist into survivorship. While not all survivors develop PIPN, for those who do, it has a substantial negative impact on their functional status and quality of life. No interventions are available to treat PIPN. In our previous studies, we identified that the HIF-1 signaling pathway (H1SP) was perturbed between breast cancer survivors with and without PIPN. Preclinical studies suggest that the H1SP is involved in the development of bortezomib-induced and diabetic peripheral neuropathy, and sciatic nerve injury. The purpose of this study was to identify H1SP genes that have both differential methylation and differential gene expression between breast cancer survivors with and without PIPN. METHODS: A multi-staged integrated analysis was performed. In peripheral blood, methylation was assayed using microarray and gene expression was assayed using RNA-seq. Candidate genes in the H1SP having both differentially methylation and differential expression were identified between survivors who received paclitaxel and did (n = 25) and did not (n = 25) develop PIPN. Then, candidate genes were evaluated for differential methylation and differential expression in public data sets of preclinical models of PIPN and sciatic nerve injury. RESULTS: Eight candidate genes were identified as both differential methylation and differential expression in survivors. Of the eight homologs identified, one was found to be differential expression in both PIPN and "normal" mice dorsal root ganglia; three were differential methylation in sciatic nerve injury versus sham rats in both pre-frontal cortex and T-cells; and two were differential methylation in sciatic nerve injury versus sham rats in the pre-frontal cortex. CONCLUSIONS: This study is the first to evaluate for methylation in cancer survivors with chronic PIPN. The findings provide evidence that the expression of H1SP genes associated with chronic PIPN in cancer survivors may be regulated by epigenetic mechanisms and suggests genes for validation as potential therapeutic targets.


Subject(s)
Breast Neoplasms/complications , Cancer Survivors , DNA Methylation/genetics , Gene Expression Regulation , Hypoxia-Inducible Factor 1/genetics , Paclitaxel/adverse effects , Peripheral Nerve Injuries/chemically induced , Signal Transduction , Animals , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Hypoxia-Inducible Factor 1/metabolism , Neuralgia/etiology , Neuralgia/genetics , Peripheral Nerve Injuries/genetics , Prefrontal Cortex/pathology , Promoter Regions, Genetic/genetics , Protein Interaction Maps/genetics , Rats , T-Lymphocytes/immunology
14.
Bioinformatics ; 35(1): 95-103, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30561547

ABSTRACT

Motivation: Multiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. Results: We performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified. Availability and implementation: Datasets and scripts for reproduction of results are available through: https://nalab.stanford.edu/multiomics-pregnancy/. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Metabolome , Microbiota , Pregnancy , Proteome , Transcriptome , Computational Biology , Female , Humans
15.
J Chem Inf Model ; 60(6): 2718-2727, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32379974

ABSTRACT

Non-targeted analysis provides a comprehensive approach to analyze environmental and biological samples for nearly all chemicals present. One of the main shortcomings of current analytical methods and workflows is that they are unable to provide any quantitative information constituting an important obstacle in understanding environmental fate and human exposure. Herein, we present an in silico quantification method using mahine-learning for chemicals analyzed using electrospray ionization (ESI). We considered three data sets from different instrumental setups: (i) capillary electrophoresis electrospray ionization-mass spectrometry (CE-MS) in positive ionization mode (ESI+), (ii) liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in ESI+ and (iii) LC-QTOF/MS in negative ionization mode (ESI-). We developed and applied two different machine-learning algorithms: a random forest (RF) and an artificial neural network (ANN) to predict the relative response factors (RRFs) of different chemicals based on their physicochemical properties. Chemical concentrations can then be calculated by dividing the measured abundance of a chemical, as peak area or peak height, by its corresponding RRF. We evaluated our models and tested their predictive power using 5-fold cross-validation (CV) and y randomization. Both the RF and the ANN models showed great promise in predicting RRFs. However, the accuracy of the predictions was dependent on the data set composition and the experimental setup. For the CE-MS ESI+ data set, the best model predicted measured RRFs with a mean absolute error (MAE) of 0.19 log units and a cross-validation coefficient of determination (Q2) of 0.84 for the testing set. For the LC-QTOF/MS ESI+ data set, the best model predicted measured RRFs with an MAE of 0.32 and a Q2 of 0.40. For the LC-QTOF/MS ESI- data set, the best model predicted measured RRFs with a MAE of 0.50 and a Q2 of 0.20. Our findings suggest that machine-learning algorithms can be used for predicting concentrations of nontargeted chemicals with reasonable uncertainties, especially in ESI+, while the application on ESI- remains a more challenging problem.


Subject(s)
Machine Learning , Spectrometry, Mass, Electrospray Ionization , Chromatography, Liquid , Computer Simulation , Humans
17.
J Pediatr ; 194: 40-46.e4, 2018 03.
Article in English | MEDLINE | ID: mdl-29249523

ABSTRACT

OBJECTIVE: To examine linkages between mitochondrial genetics and preterm birth by assessing the risk for preterm birth associated with the inheritance of nuclear haplotypes that are ancestrally distinct from mitochondrial haplogroup. STUDY DESIGN: Genome-wide genotyping studies of cohorts of preterm and term individuals were evaluated. We determined the mitochondrial haplogroup and nuclear ancestry for individuals and developed a scoring for the degree to which mitochondrial ancestry is divergent from nuclear ancestry. RESULTS: Infants with higher degrees of divergent mitochondrial ancestry were at increased risk for preterm birth (0.124 for preterm vs 0.105 for term infants; P< .05). This finding was validated in 1 of 2 replication cohorts. We also observed that greater degrees of divergent ancestry correlated with earlier delivery within the primary study population, but this finding was not replicated in secondary cohorts born preterm. CONCLUSIONS: Individuals with divergent patterns of mitochondrial and nuclear ancestry are at increased risk for preterm birth. These findings may in part explain the higher rates of preterm birth in African Americans and in individuals with a matrilineal family history of preterm birth.


Subject(s)
Ethnicity/genetics , Haplotypes/genetics , Premature Birth/genetics , White People/genetics , Case-Control Studies , Female , Humans , Infant, Premature , Pregnancy , Premature Birth/epidemiology , Socioeconomic Factors , United States/epidemiology
18.
Environ Health ; 17(1): 70, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30157858

ABSTRACT

BACKGROUND: Environmental pollution exposure during pregnancy has been identified as a risk factor for preterm birth. Most studies have evaluated exposures individually and in limited study populations. METHODS: We examined the associations between several environmental exposures, both individually and cumulatively, and risk of preterm birth in Fresno County, California. We also evaluated early (< 34 weeks) and spontaneous preterm birth. We used the Communities Environmental Health Screening Tool and linked hospital discharge records by census tract from 2009 to 2012. The environmental factors included air pollution, drinking water contaminants, pesticides, hazardous waste, traffic exposure and others. Social factors, including area-level socioeconomic status (SES) and race/ethnicity were also evaluated as potential modifiers of the relationship between pollution and preterm birth. RESULTS: In our study of 53,843 births, risk of preterm birth was associated with higher exposure to cumulative pollution scores and drinking water contaminants. Risk of preterm birth was twice as likely for those exposed to high versus low levels of pollution. An exposure-response relationship was observed across the quintiles of the pollution burden score. The associations were stronger among early preterm births in areas of low SES. CONCLUSIONS: In Fresno County, we found multiple pollution exposures associated with increased risk for preterm birth, with higher associations among the most disadvantaged. This supports other evidence finding environmental exposures are important risk factors for preterm birth, and furthermore the burden is higher in areas of low SES. This data supports efforts to reduce the environmental burden on pregnant women.


Subject(s)
Environmental Pollutants/adverse effects , Environmental Pollution/adverse effects , Pregnancy Outcome/epidemiology , Premature Birth/epidemiology , Socioeconomic Factors , Adolescent , Adult , California/epidemiology , Environmental Exposure/adverse effects , Female , Humans , Pregnancy , Premature Birth/chemically induced , Prevalence , Risk Factors , Young Adult
19.
Rheumatol Int ; 38(2): 319, 2018 02.
Article in English | MEDLINE | ID: mdl-29273937

ABSTRACT

The given and family name of a co-author R. Adams Dudley was swapped in the published article. The correct given name is R. Adams and the family name is Dudley.

20.
PLoS Comput Biol ; 12(4): e1004885, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27115429

ABSTRACT

Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford), and compared to a large database of published disease-associated genetic variants (VARIMED); data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.


Subject(s)
Comorbidity , Databases, Genetic , Electronic Health Records , Genetic Variation , Age Factors , Cluster Analysis , Computational Biology , Databases, Genetic/statistics & numerical data , Electronic Health Records/statistics & numerical data , Humans , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL