ABSTRACT
The Zn(2+) complex of 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine, Zn(DSC), binds selectively to the biologically relevant human telomeric (H-Telo) G-quadruplex. An increase in the Zn(DSC) dansyl group fluorescence with a simultaneous shift in emission is consistent with the complex binding to H-Telo. The H-Telo G-quadruplex has two binding sites for Zn(DSC) with binding constants in the low micromolar range (2.5 µM). Isothermal calorimetric titrations confirm low micromolar dissociation constants with a 2:1 stoichiometry. The interaction between H-Telo and Zn(DSC) is highly pH-dependent, consistent with binding to the unpaired thymines in the G-quadruplex loops. As a result, Zn(DSC) selectively binds to H-Telo over duplex DNA. In contrast to Zn(2+), Fe(2+) and Co(2+) do not complex to the DSC macrocycle appreciably under the conditions of the experiment. The Cu(2+) complex of DSC does not interact measurably with the H-Telo G-quadruplex. Interestingly, the H-Telo-Zn(DSC) adduct self-assembles from its individual components at physiological pH and 100 mM KCl. The self-assembly feature, which is specific for the Zn(2+) ion, suggests that this system may be viable as a Zn(2+) sensor. Pentanucleotides were studied in order to better describe the binding of Zn(DSC) to thymine sequences. NMR studies were consistent with the binding of Zn(DSC) to thymine-containing oligonucleotides including CCTCC, CTTCC, and CTCTC. Studies showed that the dansyl group of Zn(DSC) interacts with thymines in CTTCC. Fluorescence spectroscopy and ITC data indicate that Zn(DSC) forms 2:1 adducts with thymines that are spaced (CTCTC) but not tandem thymines (CTTCC). These data are consistent with one Zn(DSC) complex binding to two separate loops in the G-quadruplex. A second Zn(2+) complex containing an acridine pendent, Zn(ACR), binds tightly to pentanucleotides with both tandem and spaced thymines. Zn(ACR) indiscriminately binds to both H-Telo and duplex DNA.
Subject(s)
G-Quadruplexes , Organometallic Compounds/chemistry , Telomere/chemistry , Zinc/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesisABSTRACT
The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 µM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound zinc(II) complex is pointed into the major groove, and there are interactions with the guanine positioned 5' to the thymine bulge.
Subject(s)
DNA/chemistry , Macrocyclic Compounds/chemistry , Organometallic Compounds/chemistry , Thymine/chemistry , Zinc/chemistry , Base Sequence , DNA/genetics , Inverted Repeat Sequences , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Denaturation , Solutions , TemperatureABSTRACT
The first examples of Fe(II) PARACEST magnetic resonance contrast agents are reported (PARACEST = paramagnetic chemical exchange saturation transfer). The iron(II) complexes contain a macrocyclic ligand, either 1,4,7-tris(carbamoylmethyl)-1,4,7-triazacyclononane (L1) or 1,4,7-tris[(5-amino-6-methyl-2-pyridyl)methyl]-1,4,7-triazacyclononane (L2). The macrocycles bind Fe(II) in aqueous solution with formation constants of log K = 13.5 and 19.2, respectively, and maintain the Fe(II) state in the presence of air. These complexes each contain six exchangeable protons for CEST which are amide protons in [Fe(L1)](2+) or amino protons in [Fe(L2)](2+). The CEST peak for the [Fe(L1)](2+) amide protons is at 69 ppm downfield of the bulk water resonance whereas the CEST peak for the [Fe(L2)](2+) amine protons is at 6 ppm downfield of bulk water. CEST imaging using a MRI scanner shows that the CEST effect can be observed in solutions containing low millimolar concentrations of complex at neutral pH, 100 mM NaCl, 20 mM buffer at 25 °C or 37 °C.
Subject(s)
Contrast Media/chemistry , Ferrous Compounds/chemistry , Macrocyclic Compounds/chemistry , Magnetic Resonance Imaging/instrumentation , Ligands , Phantoms, ImagingABSTRACT
This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.
Subject(s)
Breast Neoplasms/diagnostic imaging , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/chemistry , Nanoparticles/chemistry , Optical Imaging/methods , Acrylic Resins/chemistry , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbocyanines/chemistry , Carbocyanines/metabolism , Cell Line, Tumor , Female , Fibroblasts/metabolism , Fibrosarcoma/pathology , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Folic Acid/metabolism , Glycoconjugates/chemistry , Glycoconjugates/metabolism , Heterografts , Humans , Infrared Rays , KB Cells , Mice , Mice, NudeABSTRACT
We report herein the synthesis and biological efficacy of near-infrared (NIR), bacteriochlorin analogues: 3-(1'-butyloxy)ethyl-3-deacetyl-bacteriopurpurin-18-N-butylimide methyl ester (3) and the corresponding carboxylic acid 10. In in vitro assays, compared to its methyl ester analogue 3, the corresponding carboxylic acid derivative 10 showed higher photosensitizing efficacy. However, due to drastically different pharmacokinetics in vivo, the PS 3 (HPLC purity >99%) showed higher tumor uptake and long-term tumor cure than 10 (HPLC purity >96.5%) in BALB/c mice bearing Colon 26 tumors. Isomerically pure R- and S- isomers of 3 (3a and 3b, purity by HPLC > 99%) under similar treatment parameters showed identical efficacy in vitro and in vivo. In addition, photosensitizer (PS) 3 showed limited skin phototoxicity and provides an additional advantage over the clinically approved chemically complex hematoporphyrin derivative as well as other porphyrin-based PDT agents, which makes 3 a promising dual-function agent for fluorescence-guided surgery with an option of phototherapy of cancer.
Subject(s)
Antineoplastic Agents/pharmacology , Fluorescence , Infrared Rays , Photochemotherapy , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Mice , Mice, Inbred BALB C , Molecular Structure , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemical synthesis , Porphyrins/chemistry , Structure-Activity Relationship , Tumor Cells, CulturedABSTRACT
Six Zn(II) complexes of derivatives of 1,4,7,10-tetraazacyclododecane (cyclen) were studied for binding to DNA sequences containing non-canonical thymines, including a hairpin with a single thymine bulge (T-bulge) and a G-quadruplex (H-telo) containing thymine loops. The cyclen-based macrocycles contained pendents with either two fused rings to give planar groups including quinolinone (QMC), coumarin (MCC) and quinoline (CQC) derivatives or a non-planar dansyl group (DSC). Macrocyclic complexes with three fused rings including an anthraquinone pendent (ATQ) were also studied. All Zn(II) complexes were stable in solution at micromolar concentrations and neutral pH with the Zn(L)(OH2) species prevailing for L = QMC and CQC at pH 7.5 and 100 mM NaCl. Immobilized T-bulge or H-telo G-quadruplex was used to study binding of the complexes by surface plasmon resonance (SPR) for several of the complexes. For the most part, data matched well with that obtained by isothermal calorimetry (ITC) and, for fluorescent complexes, by fluorescence titrations. Data showed that Zn(II) complexes containing planar aromatic pendents with two fused rings bound to T-bulge more tightly than complexes with non-planar pendents such as DSC. The H-telo DNA exhibited multiple binding sites for all complexes containing aromatic pendents. The complexes with two fused rings bound with low micromolar dissociation constants and two binding sites whereas a complex with three fused rings (ATQ) bound to three sites. This study shows that different pendent groups on Zn(II) cyclen complexes impart selectivity for recognition of non-canonical DNA structures.