ABSTRACT
Human enterovirus causes various clinical manifestations in the form of rashes, febrile illness, flu-like illness, uveitis, hand-foot-mouth disease (HFMD), herpangina, meningitis, and encephalitis. Enterovirus A71 and coxsackievirus are significant causes of epidemic HFMD worldwide, especially in children aged from birth to five years old. The enterovirus genotype variants causing HFMD epidemics have been reported increasingly worldwide in the last decade. We aim to use simple and robust molecular tools to investigate human enteroviruses circulating among kindergarten students at genotype and subgenotype levels. With the partial 5'-UTR sequencing analysis as a low-resolution preliminary grouping tool, ten enterovirus A71 (EV-A71) and coxsackievirus clusters were identified among 18 symptomatic cases and 14 asymptomatic cases in five kindergartens in Bangkok, Thailand, between July 2019 and January 2020. Two occurrences of a single clone causing an infection cluster were identified (EV-A71 C1-like subgenotype and coxsackievirus A6). Random amplification-based sequencing using MinION (Oxford Nanopore Technology) helped identify viral transmission between two closely related clones. Diverse genotypes co-circulating among children in kindergartens are reservoirs for new genotype variants emerging, which might be more virulent or better at immune escape. Surveillance of highly contagious enterovirus in communities is essential for disease notifications and controls.
Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Child , Humans , Thailand/epidemiology , Enterovirus/genetics , Hand, Foot and Mouth Disease/epidemiology , Genotype , China/epidemiologyABSTRACT
Most cases of dengue virus infection are mild, but severe cases can be fatal. Therefore, identification of factors associated with dengue severity is essential to improve patient outcomes and reduce mortality. The objective of this study was to assess associations between nutritional status and dengue severity among Thai children and adolescents. This retrospective cross-sectional study was based on the medical records of 355 patients with dengue treated at the Hospital for Tropical Disease (Bangkok, Thailand) from 2017 to 2019. Subjects were Thai children aged less than 18 years with dengue virus infection confirmed by positive NS1 antigen or IgM. The 1997 and 2009 World Health Organization (WHO) dengue classifications were used to define disease severity and body mass index for age while the WHO growth chart was used to classify nutritional status. The proportions of patients with dengue fever who were underweight, normal weight, and overweight were 8.8%, 61.5%, and 29.7%, respectively. The proportions of patients with dengue haemorrhagic fever (DHF) who were underweight, normal weight, and overweight were 10.2%, 66.1%, and 23.7%, respectively. The proportions of patients with non-severe dengue who were underweight, normal weight, and overweight were 8.6%, 60.9%, and 30.5%, respectively; the same proportions of patients with severe dengue were 10.5%, 67.1%, and 22.4%, respectively. Higher proportions of patients with severe plasma leakage (DHF grade III and IV) were overweight compared with those with mild plasma leakage (DHF grade I and II) (45.5% vs. 18.8%). No difference in nutritional status was observed in patients with different dengue severity.
Subject(s)
Dengue , Virus Diseases , Adolescent , Child , Cross-Sectional Studies , Dengue/complications , Dengue/epidemiology , Humans , Nutritional Status , Overweight , Retrospective Studies , Thailand/epidemiology , ThinnessABSTRACT
Zika virus (ZIKV) is a mosquito-borne flavivirus that has recently emerged as a global health threat. The rise in ZIKV infections has driven an increased incidence of neonates born with microcephaly or other neurological malformations. Therefore, screening for ZIKV infection can considerably impact pregnant women, especially during the first trimester. The majority of ZIKV infections are mild or asymptomatic, and clinical diagnosis is inaccurate. Moreover, given the high level of cross-reactivity among flaviviruses, serological approaches to distinguish ZIKV from dengue virus (DENV) infections are complicated. We used the combination of DENV and ZIKV nonstructural protein 1 (NS1) IgG enzyme-linked immunosorbent assay (ELISA) and ZIKV NS1 blockade-of-binding (BOB) ELISA to test the convalescent sera of non-flavivirus, primary DENV, secondary DENV, and ZIKV infections. Our findings indicate that primary testing using a ZIKV NS1 IgG ELISA, the test of choice for large-scale ZIKV serosurvey studies, provided relatively high sensitivity. Moreover, the confirmation of positive ELISA results using the ZIKV NS1 BOB ELISA increased average specificity to 94.59% across serum samples. The combined use of two simple ELISAs for ZIKV serosurveys and the monitoring of ZIKV infection during pregnancy can elucidate the epidemiology, pathogenesis, and complications of ZIKV in DENV-endemic areas.
ABSTRACT
The 2022 multi-country monkeypox outbreak in humans has brought new public health adversity on top of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The disease has spread to 104 countries throughout six continents of the world, with the highest burden in North America and Europe. The etiologic agent, monkeypox virus (MPXV), has been known since 1959 after isolation from infected monkeys, and virulence among humans has been reported since the 1970s, mainly in endemic countries in West and Central Africa. However, the disease has re-emerged in 2022 at an unprecedented pace, with particular concern on its human-to-human transmissibility and community spread in non-endemic regions. As a mitigation effort, healthcare workers, public health policymakers, and the general public worldwide need to be well-informed on this relatively neglected viral disease. Here, we provide a comprehensive and up-to-date overview of monkeypox, including the following aspects: epidemiology, etiology, pathogenesis, clinical features, diagnosis, and management. In addition, the current review discusses the preventive and control measures, the latest vaccine developments, and the future research areas in this re-emerging viral disease that was declared as a public health emergency of international concern.
Subject(s)
COVID-19 , Mpox (monkeypox) , Vaccines , Humans , Mpox (monkeypox)/epidemiology , COVID-19/epidemiology , Monkeypox virus , Disease OutbreaksABSTRACT
Arboviruses, particularly dengue virus (DENV), Zika virus (ZIKV), and Chikungunya virus (CHIKV), pose a growing threat to global public health. For disease burden estimation and disease control, seroprevalence studies are paramount. This study was performed to determine the prevalence of DENV, ZIKV, and CHIKV on healthy individuals aged from 1-55 years old in Bangphae district, Ratchaburi province, Thailand. Enzyme-linked immunosorbent assays (ELISAs) and rapid diagnostic tests (RDTs) were performed on archived samples from a dengue serological survey conducted from 2012-2015. All 2012 samples had been previously tested using an anti-DENV immunoglobulin (Ig)G ELISA, and 400 randomly selected samples stratified by age, sex, and residential area were assessed by an in-house anti-ZIKV IgG ELISA and a commercial anti-CHIKV IgG ELISA to determine virus-specific antibody levels. An RDT (Chembio DPP® ZCD IgM/IgG System) was also used to investigate the presence of antibodies against DENV, ZIKV, or CHIKV. The ELISA results indicate that the seroprevalences of DENV, ZIKV, and CHIKV were 84.3%, 58.0%, and 22.5%, respectively. The youngest age group had the lowest seroprevalence for all three arboviruses, and the seroprevalences for these viruses were progressively higher with increasing participant age. The DPP® IgG sensitivities, as compared with ELISAs, for DENV, ZIKV, and CHIKV were relatively low, only 43.92%, 25.86%, and 37.78%, respectively. The ELISA results indicate that 16% of the study population was seropositive for all three viruses. DENV had the highest seroprevalence. ZIKV and CHIKV were also circulating in Bangphae district, Ratchaburi province, Thailand. The DPP® ZCD rapid test is not sensitive enough for use in seroprevalence studies.
ABSTRACT
Zika virus (ZIKV) is the mosquito-transmitted virus that the WHO declared a Public Health Emergency of International Concern in 2016 due to the consequence of microcephaly from infected pregnancies. The incidence of Zika infection has been unclear in many countries because most infected people have nonspecific febrile illnesses. This study's aim is to investigate the incidence of symptomatic Zika virus infections from the archived samples of a dengue cohort study of children in central Thailand from 2006 to 2009. We performed Zika NS1 immunoglobulin (Ig)G enzyme-linked immunosorbent assay (ELISA) screening to identify symptomatic Zika infections in paired acute/convalescent serum samples. Symptomatic Zika infections were confirmed by reverse transcription polymerase chain reactions (RT-PCR) of acute serum samples. The comparison of the Zika NS1 IgG ELISA results between acute and convalescent samples showed 290/955 (30.4%) seropositive cases. Zika RT-PCR results were positive in 28 febrile cases (15 females, 13 males). Zika RT-PCR showed that symptomatic Zika infection occurred in children aged 4-11 years in Ratchaburi province, Thailand (2007-2009, first case in April 2007), and the symptomatic Zika:dengue infection ratio was 28 Zika:394 dengue (1:14). Phylogenetic analysis showed that all Zika viruses were of Asian lineage. Zika NS1 IgG ELISA identified Zika-infected patients and showed a low Zika:dengue ratio.
Subject(s)
Dengue/epidemiology , Epidemiological Monitoring , Phylogeny , Zika Virus Infection/epidemiology , Zika Virus/genetics , Antibodies, Viral/blood , Child , Child, Preschool , Cohort Studies , Dengue Virus/pathogenicity , Female , Humans , Incidence , Male , Thailand/epidemiology , Zika Virus/classificationABSTRACT
Hand, foot, and mouth disease (HFMD) is a contagious childhood illness and annually affects millions of children aged less than 5 years across the Asia-Pacific region. HFMD transmission mainly occurs through direct contact (person-to-person) and indirect contact with contaminated surfaces and objects. Therefore, public health measures to reduce the spread of HFMD in kindergartens and daycare centers are essential. Based on the guidelines by the Department of Disease Control, a school closure policy for HFMD outbreaks wherein every school in Thailand must close when several HFMD classrooms (more than two cases in each classroom) are encountered within a week, was implemented, although without strong supporting evidence. We therefore conducted a prospective cohort study of children attending five kindergartens during 2019 and 2020. We used molecular genetic techniques to investigate the characteristics of the spreading patterns of HFMD in a school-based setting in Bangkok, Thailand. These analyses identified 22 index cases of HFMD (symptomatic infections) and 25 cases of enterovirus-positive asymptomatic contacts (24 students and one teacher). Enterovirus (EV) A71 was the most common enterovirus detected, and most of the infected persons (8/12) developed symptoms. Other enteroviruses included coxsackieviruses (CVs) A4, CV-A6, CV-A9, and CV-A10 as well as echovirus. The pattern of the spread of HFMD showed that 45% of the subsequent enteroviruses detected in each outbreak possessed the same serotype as the first index case. Moreover, we found a phylogenetic relationship among enteroviruses detected among contact and index cases in the same kindergarten. These findings confirm the benefit of molecular genetic assays to acquire accurate data to support school closure policies designed to control HFMD infections.
ABSTRACT
To survive within a red blood cell (RBC), malaria parasites establish striking modifications to the permeability, rigidity and cytoadherence properties of the host cell. This is mediated by the export of hundreds of proteins from the parasite into the erythrocyte. Plasmodium falciparum plasmepsin V (PfPMV), is an ER resident aspartic protease that processes proteins for export into the host erythrocyte, plays a crucial role in parasite virulence and survival and is considered a potential malaria drug target. Most attempts at its heterologous expression in Escherichia coli have resulted in mainly the production of insoluble proteins. In this study, we employed a multipurpose fusion tag to improve the production of PfPMV in E. coli. Recombinant PfPMVm, comprising residues 84-521, was substantially obtained in soluble form and could be purified in a single step, yielding a 3.7-fold increase in purified PfPMVm compared to previous reports. Additionally, we have mutated the catalytic residues (D118N and D365N), individually and together, and the unpaired cysteine residue C178 to evaluate the effects on catalytic efficiency. Mutation of D365 had more pronounced effects on the catalytic efficiency than that of D118, suggesting that the D365 may act as a catalytic nucleophile to activate the water molecule. The importance of C178 was also confirmed by the inhibition by metal ions, indicating that C178 is partially involved in the substrate recognition. Collectively, our results describe an improved system to produce recombinant PfPMVm in E. coli and dissect the amino acids involved in catalysis and substrate recognition.
Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Amino Acid Motifs , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/genetics , Catalysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Protein Engineering , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Substrate SpecificityABSTRACT
Plasmodium proteases play both regulatory and effector roles in essential biological processes in this important pathogen and have long been investigated as drug targets. Plasmepsin V from P. falciparum (PfPMV) is an essential protease that processes proteins for export into the host erythrocyte and is a focus of ongoing drug development efforts. In the present study, recombinant protein production, inhibition assays, binding studies as well as molecular docking and molecular dynamics simulation studies were used to investigate the mode of binding of a PEXEL-based peptidomimetic and naphthoquinone compounds to PfPMV. Consistent with our previous study, refolded PfPMVs were produced with functional characteristics similar to the soluble counterpart. Naphthoquinone compounds inhibited PfPMV activity by 50% at 50⯵M but did not affect pepsin activity. The IC50 values of compounds 31 and 37 against PfPMV were 22.25 and 68.94⯵M, respectively. Molecular dynamics simulations revealed that PEXEL peptide interacted with PfPMV active site residues via electrostatic interactions while naphthoquinone binding preferred van der Waal interactions. P1'-Ser of the PfEMP2 substrate formed an additional H-bond with Asp365 promoting the catalytic efficiency. Additionally, the effect of metal ions on the secondary structure of PfPMV was examined. Our results confirmed that Hg2+ ions reversibly induced the changes in secondary structure of the protein whereas Fe3+ ions induced irreversibly. No change was observed in the presence of Ca2+ ions. Overall, the results here suggested that naphthoquinone derivatives may represent another source of antimalarial inhibitors targeting aspartic proteases but further chemical modifications are required.
Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Naphthoquinones/pharmacology , Peptidomimetics , Plasmodium falciparum/drug effects , Protease Inhibitors/pharmacology , Animals , Aspartic Acid Endopeptidases/chemistry , Calcium/metabolism , Catalysis , Computer Simulation , Fluorescent Dyes , Humans , Hydrogen Bonding , In Vitro Techniques , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Dynamics Simulation , Naphthoquinones/chemistry , Plasmodium falciparum/enzymology , Protease Inhibitors/chemistry , Protein Structure, Secondary , Structure-Activity RelationshipABSTRACT
Plasmepsin V from Plasmodium falciparum (PfPMV) is responsible for the cleavage of the Plasmodium export element (PEXEL) motif at the N-terminus of several hundreds of the exported proteins. PfPMV is necessary for parasite viability and has become a novel promising target for antimalarial therapy. The first recombinant expression of soluble, active PfPMV as thioredoxin fusion proteins is reported herein. Two truncated forms of PfPMV were fused to thioredoxin (Trx) to generate Trx-PfPMVp37 and Trx-PfPMVm84. The fusion proteins were successfully purified using Ni(2+) affinity chromatography in combination with ATP treatment to eliminate Escherichia coli HSP60 contaminant. Trx-PfPMVm84 could hydrolyze the PEXEL-containing peptides more efficiently than Trx-PfPMVp37. Interestingly, both Trx-PfPMVs preferred to cleave PfEMP2 peptide over HRPII peptide. The replacement of Ser with Val or Glu at P1' position created a substrate with 75% reduction in the enzyme activity, whereas the substitution of Ile with Lys or Glu at P2 position reduced the cleavage efficiency by 30%. The activity of Trx-PfPMVm84 was inhibited by PMSF and nelfinavir but not by pepstatin A. After the removal of Trx domain, activities of both enzymes toward PfEMP2 and HRPII peptides were fitted to the Michaelis-Menten model to determine kinetic parameters. The Km values toward both peptides were apparently much lower than the previously reported data although with similar kcat values. Along with an improved PfPMV preparation protocol, these findings have provided insights into its substrate specificity at P2 and P1' positions as well as interactions among the enzyme, substrates, and inhibitors.
Subject(s)
Aspartic Acid Endopeptidases/metabolism , Plasmodium falciparum/enzymology , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/isolation & purification , Catalytic Domain , Chromatography, Affinity , Escherichia coli/genetics , Gene Expression , Kinetics , Molecular Sequence Data , Molecular Weight , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/isolation & purification , Mutant Proteins/metabolism , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Substrate SpecificityABSTRACT
Plasmepsin V (PMV) is a Plasmodium aspartic protease responsible for the cleavage of the Plasmodium export element (PEXEL) motif, which is an essential step for export of PEXEL containing proteins and crucial for parasite viability. Here we describe the genetic polymorphism of Plasmodium vivax PMV (PvPMV) Thailand isolates, followed by cloning, expression, purification and characterization of PvPMV-Thai, presenting the pro- and mature-form of PvPMV-Thai. With our refolding and purification method, approximately 1mg of PvPMV-Thai was obtained from 1g of washed inclusion bodies. Unlike PvPMV-Ind and PvPMV-Sal-1, PvPMV-Thai contains a four-amino acid insertion (SVSE) at residues 246-249. We have confirmed that this insertion did not interfere with the catalytic activity as it is located in the long loop (R241-E272) pointing away from the substrate-binding pocket. PvPMV-Thai exhibited similar activity to PfPMV counterparts in which PfEMP2 could be hydrolyzed more efficiently than HRPII. Substrate specificity studies at P1' showed that replacing Ser by Val or Glu of the PfEMP2 peptide markedly reduced the enzyme activity of PvPMV similar to that of PfPMV whereas replacing His by Val or Ser of the HRPII peptide increased the cleavage activity. However, the substitution of amino acids at the P2 position with Glu dramatically reduced the cleavage efficiency by 80% in PvPMV in contrast to 30% in PfPMV, indicating subtle differences around the S2 binding pocket of both PfPMV and PvPMV. Four inhibitors were also evaluated for PvPMV-Thai activity including PMSF, pepstatin A, nelfinavir, and menisporopsin A-a macrocyclic polylactone. We are the first to show that menisporopsin A partially inhibits the PvPMV-Thai activity at high concentration. Taken together, these findings provide insights into recombinant production, substrate specificity and inhibition of PvPMV-Thai.
Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Malaria, Vivax/parasitology , Plasmodium vivax/enzymology , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Amino Acid Motifs , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/isolation & purification , Enzyme Stability , Erythrocytes/parasitology , Humans , Kinetics , Plasmodium vivax/chemistry , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Substrate Specificity , ThailandABSTRACT
Numerous naphthoquinone derivatives, such as rhinacanthins function as anticancer drugs, which target hTopoII. The structure of hTopoII contains both an ATPase domain and a DNA binding domain. Several drugs bind to either one or both of these domains, thus modifying the activity of hTopoII. The naphthoquinone esters and amides used in this study showed that their hTopoIIα inhibitory activity was inversely proportional to ATP concentration. In order to better characterize the inhibitory action of these compounds, sufficient quantities of soluble functional hTopoII-ATPase domain were required. Therefore, both the alpha and beta isoforms of the hTopoII-ATPase domain were over-expressed in Escherichia coli. The hTopoIIα-ATPase activity was reduced in the presence of naphthoquinone derivatives. Additionally, a molecular docking study revealed that the selected naphthoquinone ester and amide bind to the ATP-binding domain of hTopoIIα. Collectively, the results here provide for the first time a novel insight into the interaction between naphthoquinone esters and amides, and the ATP-binding domain of hTopoIIα. The further elucidation of the mechanism of action of the naphthoquinone esters and amides inhibitory activity is essential.
Subject(s)
Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Naphthoquinones/pharmacokinetics , Protein Structure, Tertiary/drug effects , Topoisomerase II Inhibitors/pharmacology , Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/metabolism , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Humans , Molecular Docking Simulation/methods , Naphthoquinones/chemistry , Protein Isoforms/metabolismABSTRACT
Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 µM and 20 µM can completely inhibit hTopoIIα activity while at 10 µM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay.
Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Esters/pharmacology , Naphthoquinones/chemistry , Amides/chemical synthesis , Amides/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Esters/chemical synthesis , Esters/chemistry , Humans , KB Cells , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Vero CellsABSTRACT
Sixteen novel naphthoquinone aromatic amides were synthesized by a new route starting from 1-hydroxy-2-naphthoic acid in nine or ten steps with good to excellent yield. Amide formation reaction was carried out by using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as an efficient condensing agent leading to carboxamides in high yield. The key step for converting naphthol to 3-hydroxynaphthoquinone was the Fremy's salt oxidation followed by hydroxylation with tert-butyl hydroperoxide and triton B. Anticancer activity of these new naphthoquinone amides were evaluated and benzamide 22 showed potent inhibition against NCI-H187 cell lines while naphthamides 23 and 43 were the most potent inhibition against KB cells. The decatenation assay revealed that compounds 24 and 43 at 20 µM can inhibit hTopoIIα activity while three other compounds, namely compounds 22, 23, and 45, exhibited hTopoIIα inhibitory activity at final concentration of 50 µM. Docking experiment revealed the same trend as the cytotoxicity and decatenation assay. Therefore, naphthamides 24 and 43 can be promising target molecules for anticancer drug development.