Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682685

ABSTRACT

Telomere shortening can result in cellular senescence and in increased level of genome instability, which are key events in numerous of cancer types. Despite this, few studies have focused on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection, as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis, and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia. These histological alterations were accompanied by deregulation of genes involved in fibrosis and immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung. Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation and fibrosis.


Subject(s)
Nanotubes, Carbon , Animals , Epithelial Cells/metabolism , Fibrosis , Lung/pathology , Mice , Nanotubes, Carbon/toxicity , Telomere/genetics
2.
Int J Mol Sci ; 20(2)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654492

ABSTRACT

Despite the rigorous emission control measures in the ferroalloy industry, there are still emissions of dust during the production of various alloys. Dust particles were collected from laboratory scale processes where oxide particulate matter was formed from liquid silicon (metallurgical grade). The dust was produced in a dry air atmosphere to mimic industrial conditions. To investigate possible effects of ultrafine dust on the central nervous system, a human astrocytic cell line was employed to investigate inflammatory effects of particles as astrocytes play a number of active and neuron supporting roles in the brain. Toxicity on the astrocytes by amorphous silica generated in laboratory scale was compared to crystalline macro-sized silica using several doses to determine toxicological dose response curves. The cell viability experiments indicated that low particle doses of amorphous silica induced a small nonsignificant reduction in cell viability compared to crystalline silica which led to increased levels of toxicity. The gene expression of amyloid precursor protein (APP), a biomarker of neurodegenerative disease, was affected by particle exposure. Furthermore, particle exposure, in a dose-and time-dependent manner, affected the ability of the cells to communicate through gap junction channels. In conclusion, in vitro studies using low doses of particles are important to understand mechanisms of toxicity of occupational exposure to silica particles. However, these studies cannot be extrapolated to real exposure scenarios at work place, therefore, controlling and keeping the particle exposure levels low at the work place, would prevent potential negative health effects.


Subject(s)
Air Pollutants, Occupational/toxicity , Dust , Silicon Dioxide/toxicity , Amyloid beta-Protein Precursor/metabolism , Astrocytoma/pathology , Cell Death/drug effects , Cell Line, Tumor , Gap Junctions/drug effects , Gap Junctions/metabolism , Humans
3.
Int J Mol Sci ; 20(3)2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30744184

ABSTRACT

Tremendous efforts are applied in the ferroalloy industry to control and reduce exposure to dust generated during the production process, as inhalable Mn-containing particulate matter has been linked to neurodegenerative diseases. This study aimed to investigate the toxicity and biological effects of dust particles from laboratory-scale processes where molten silicomanganese (SiMn) was exposed to air, using a human astrocytoma cell line, 1321N1, as model system. Characterization of the dust indicated presence of both nano-sized and larger particles averaging between 100 and 300 nm. The dust consisted mainly of Si, Mn and O. Investigation of cellular mechanisms showed a dose- and time-dependent effect on cell viability, with only minor changes in the expression of proteins involved in apoptosis. Moreover, gene expression of the neurotoxic biomarker amyloid precursor protein (APP) increased, whereas APP protein expression decreased. Finally, induction of gap junctional intercellular communication (GJIC) increased with higher doses and correlated with the other endpoints. Thus, the effects of SiMn dust on 1321N1 cells are highly dependent on the dose of exposure and involves changes in APP, apoptosis-related proteins and intercellular communication.


Subject(s)
Antineoplastic Agents/pharmacology , Dust , Manganese/pharmacology , Silicon Compounds/pharmacology , Antineoplastic Agents/chemistry , Astrocytoma , Cell Line, Tumor , Cell Survival/drug effects , Humans , Manganese/chemistry , Nanotechnology , Occupational Exposure , Silicon Compounds/chemistry
4.
Carcinogenesis ; 39(3): 336-346, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29059373

ABSTRACT

Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Smoking/adverse effects , Case-Control Studies , Gene-Environment Interaction , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide , White People
5.
Regul Toxicol Pharmacol ; 95: 270-279, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29614343

ABSTRACT

With the emergence of nanotechnology the number of manufactured nanomaterials (MNM) in production and use is constantly increasing. Exposure of workers to MNM is of concern, because still much is unknown about health effects. MNM may have different properties, testing of each material is time consuming and costly. Experts have proposed various approaches to categorize MNM to facilitate risk assessment of human health effects based on shared properties of various materials. A systematic literature survey was undertaken to identify expert opinions on grouping of MNM published between the years 2000 and 2015. We summarized and synthesized the opinions according to a systematic review of text and opinion. We identified 22 articles that fulfilled our inclusion criteria reporting 17 proposals with three proposals for groups and 14 proposals for criteria for grouping. Five proposals suggested one or more of the following groups of concern: fibrous, biopersistent, high solubility with high toxicity, chemically active. Criteria proposed in multiple studies were: viable testing options, mode of action, physicochemical properties predicting toxicity. We conclude that a limited number of groups have been proposed to categorize MNM according to human health concern. Further research should be conducted to underpin the proposed groups with empirical evidence.


Subject(s)
Nanostructures/classification , Nanostructures/toxicity , Risk Assessment/methods , Animals , Expert Testimony , Humans
6.
Mol Carcinog ; 56(9): 2076-2085, 2017 09.
Article in English | MEDLINE | ID: mdl-28418179

ABSTRACT

Metastasis and cell adhesion are key aspects of cancer progression. Neurofascin (NFASC) is a member of the immunoglobulin superfamily of adhesion molecules and, while studies on NFASC are inadequate, other members have been indicated pivotal roles in cancer progression and metastasis. This study aimed at increasing the knowledge on the involvement of adhesion molecules in lung cancer progression by studying the regulation and role of NFASC in non-small cell lung cancer (NSCLC). Here, copy number variations in the NFASC gene were analyzed in tumor and non-tumorous lung tissues of 204 NSCLC patients. Frequent gene amplifications (OR = 4.50, 95%CI: 2.27-8.92, P ≤ 0.001) and increased expression of NFASC (P = 0.034) were identified in tumors of NSCLC patients. Furthermore, molecular mechanisms of NFASC in lung cancer progression were evaluated by investigating the effects of NFASC silencing on cell proliferation, viability, migration, and invasion using siRNA technology in four NSCLC cell lines. Silencing of NFASC did not affect cell proliferation or viability but rather decreased NSCLC cell migration (P ≤ 0.001) and led to morphological changes, rearrangements in the actin cytoskeleton and changes in F-actin networks in migrating NSCLC cell lines. This study is the first to report frequent copy number gain and increased expression of NFASC in NSCLC. Moreover, these data suggest that NFASC is a novel regulator of NSCLC cell motility and support a role of NFASC in the regulation of NSCLC progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cell Adhesion Molecules/genetics , DNA Copy Number Variations , Lung Neoplasms/genetics , Nerve Growth Factors/genetics , Actins/metabolism , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/physiopathology , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Disease Progression , Female , Gene Silencing , Humans , Lung Neoplasms/physiopathology , Male , Middle Aged , Neoplasm Invasiveness/genetics
7.
BMC Cancer ; 16: 28, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26780934

ABSTRACT

BACKGROUND: Amplifications of the transcription factor, SRY (sex determining region Y)-box 2 (SOX2), are common in non-small cell lung cancer (NSCLC). SOX2 signaling is important in maintaining the stem cell-like phenotype of cancer cells and contributes to the pathogenesis of lung cancer. TP53 is known to inhibit gene amplifications and to repress many stem cell-associated genes following DNA damage. The aim of this study was to investigate if TP53 mutational status affected SOX2 copy number variation and gene expression in early-stage NSCLC patients; moreover, to assess if TP53 regulates SOX2 expression in human lung cancer cells. METHODS: 258 early-stage lung cancer patients were included in the study. Exons 4-9 in the TP53 gene were sequenced for mutations in tumor tissues. SOX2 copy number as well as TP53 and SOX2 gene expression were analyzed in tumor and in adjacent non-tumorous tissues by qPCR. TP53 and SOX2 were silenced using gene-specific siRNAs in human lung adenocarcinoma A427 cells, and the expression of TP53, SOX2 and subset of selected miRNAs was analyzed by qPCR. The odds ratios (ORs) for associations between copy number variation and lung cancer were estimated by conditional logistic regression, and the correlation between gene status and clinicopathological characteristics was assessed by Chi-square or Fisher's exact test. Gene expression data was analyzed using nonparametric Mann-Whitney test. RESULTS: TP53 mutations were associated with an increased risk of acquiring a SOX2 copy number alteration (OR = 2.08, 95% CI: 1.14-3.79, p = 0.017), which was more frequently occurring in tumor tissues (34%) than in adjacent non-tumorous tissues (3%). Moreover, SOX2 and TP53 expression levels were strongly correlated in tumor tissues. In vitro studies showed that a reduction in TP53 was associated with decreased SOX2 expression in A427 cells. Furthermore, TP53 knockdown reduced the miRNA hsa-miR-145, which has previously been shown to regulate SOX2 expression. CONCLUSIONS: TP53 signaling may be important in the regulation of SOX2 copy number and expression in NSCLC tumors, and the miRNA hsa-miR-145-5p may be one potential driver. This prompts for further studies on the mechanisms behind the TP53-induced regulation of SOX2 expression and the possible importance of hsa-miR-145 in lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , MicroRNAs/biosynthesis , SOXB1 Transcription Factors/biosynthesis , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , DNA Copy Number Variations , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Male , MicroRNAs/genetics , Middle Aged , Mutation , Prognosis , Risk , SOXB1 Transcription Factors/genetics , Tumor Suppressor Protein p53/antagonists & inhibitors
8.
Ann Occup Hyg ; 60(4): 493-512, 2016 May.
Article in English | MEDLINE | ID: mdl-26748380

ABSTRACT

INTRODUCTION: An increased production and use of carbon nanotubes (CNTs) is occurring worldwide. In parallel, a growing concern is emerging on the adverse effects the unintentional inhalation of CNTs can have on humans. There is currently a debate regarding which exposure metrics and measurement strategies are the most relevant to investigate workplace exposures to CNTs. This study investigated workplace CNT emissions using a combination of time-integrated filter sampling for scanning electron microscopy (SEM) and direct reading aerosol instruments (DRIs). MATERIAL AND METHODS: Field measurements were performed during small-scale manufacturing of multiwalled carbon nanotubes using the arc discharge technique. Measurements with highly time- and size-resolved DRI techniques were carried out both in the emission and background (far-field) zones. Novel classifications and counting criteria were set up for the SEM method. Three classes of CNT-containing particles were defined: type 1: particles with aspect ratio length:width >3:1 (fibrous particles); type 2: particles without fibre characteristics but with high CNT content; and type 3: particles with visible embedded CNTs. RESULTS: Offline sampling using SEM showed emissions of CNT-containing particles in 5 out of 11 work tasks. The particles were classified into the three classes, of which type 1, fibrous CNT particles contributed 37%. The concentration of all CNT-containing particles and the occurrence of the particle classes varied strongly between work tasks. Based on the emission measurements, it was assessed that more than 85% of the exposure originated from open handling of CNT powder during the Sieving, mechanical work-up, and packaging work task. The DRI measurements provided complementary information, which combined with SEM provided information on: (i) the background adjusted emission concentration from each work task in different particle size ranges, (ii) identification of the key procedures in each work task that lead to emission peaks, (iii) identification of emission events that affect the background, thereby leading to far-field exposure risks for workers other than the operator of the work task, and (iv) the fraction of particles emitted from each source that contains CNTs. CONCLUSIONS: There is an urgent need for a standardized/harmonized method for electron microscopy (EM) analysis of CNTs. The SEM method developed in this study can form the basis for such a harmonized protocol for the counting of CNTs. The size-resolved DRI techniques are commonly not specific enough to selective analysis of CNT-containing particles and thus cannot yet replace offline time-integrated filter sampling followed by SEM. A combination of EM and DRI techniques offers the most complete characterization of workplace emissions of CNTs today.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Microscopy, Electron, Scanning , Nanotubes, Carbon/analysis , Occupational Exposure/analysis , Aerosols/analysis , Humans , Inhalation Exposure/analysis , Microscopy, Electron, Scanning/methods , Particle Size
9.
Cytokine ; 73(1): 128-37, 2015 May.
Article in English | MEDLINE | ID: mdl-25748835

ABSTRACT

The interleukin-1 (IL-1) family has been implicated in cellular responses to nanoparticles including carbon nanotubes (CNTs). IL-1α and ß are key proinflammatory cytokines important in inflammatory and oxidative stress responses. The aim of this study was to characterize the role of IL-1 in cellular responses of CNTs in cells from IL-1α/ß wild type (IL1-WT) mice and cells with reduced inflammatory potential from IL-1α/ß deficient (IL1-KO) mice. Two multi-walled CNTs, CNT-1 containing long and thick fibers and CNT-2 containing short and thin fibers, were compared to UICC crocidolite asbestos fibers. Upon CNT exposure toxicity and apoptosis were affected differently in IL1-WT and IL1-KO cells. Upregulation of TNFα and IL-1α mRNA expression in IL1-WT cells was dependent on the type of CNT. On the contrary precursor IL-1α protein was downregulated after 24h. The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) was activated in IL1-KO cells and regulated by CNTs, whereas no significant changes of extracellular regulated kinase (ERK) were observed when comparing IL1-WT and IL1-KO cells. In summary, the results presented here indicate that IL-1 contributes to the cellular and molecular effects of CNT exposure and that the type of CNT has an important effect on the cellular response.


Subject(s)
Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Nanotubes, Carbon/toxicity , Animals , Apoptosis/drug effects , Apoptosis/genetics , Asbestos/toxicity , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Inflammation/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Inbred BALB C , Nanotubes, Carbon/ultrastructure , Particle Size , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spectrometry, X-Ray Emission
10.
Anal Bioanal Chem ; 407(21): 6435-45, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26077746

ABSTRACT

The size, morphology, and chemical composition of particles deposited in the lungs of two nickel refinery workers were studied by scanning and transmission electron microscopy. The particles were extracted from the lung tissue by low-temperature ashing or by dissolution in tetramethylammonium hydroxide. The suitability of both sample preparation techniques was checked with reference materials. Both approaches lead to Fe-rich artifact particles. Low-temperature ashing leads to oxidation of small (diameter < 2 µm) metallic Ni and Ni sulfide particles, dissolution in tetramethylammonium hydroxide to removal of sulfate surface layers. Silicates and alumosilicates are the most abundant particle groups in the lungs of both subjects. From the various metal-dominated particle groups, Ni-rich particles are most abundant followed by Fe-rich and Ti-rich particles. Ni appears to be present predominantly as an oxide. Pure Ni metal and Ni sulfides were not observed. The presence of soluble Ni phases was not investigated as they will not be preserved during sample preparation. Based on their spherical morphology, it is estimated that a large fraction of Ni-rich particles (50-60 % by number) as well as Fe-rich and Cu-rich particles (27-45 %) originate from high-temperature processes (smelting, welding). This fraction is much lower for silicates (3-5 %), alumosilicates (1-2 %), and Ti-rich particles (9-11 %). The absence of metallic Ni particles most likely results from low exposure to this species. The absence of Ni sulfides may be either ascribed to low exposure or to fast clearance.


Subject(s)
Lung/metabolism , Microscopy, Electron, Transmission/methods , Nickel/toxicity , Occupational Exposure , Humans , Lung/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL