Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chem ; 86(10): 4698-706, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24761992

ABSTRACT

Shiga-like toxins (verotoxins) are a class of AB5 holotoxins that are primarily responsible for the virulence associated with Shiga-like toxin producing Escherichia coli (STEC) infections. The holotoxins are composed of a pentamer of identical subunits (B subunit) responsible for delivering the catalytic subunit (A subunit) to a host cell and facilitating endocytosis of the toxin into the cell. The B subunits are not associated with toxicity. We developed a multiple reaction monitoring method based on analyzing conserved peptides, derived from the tryptic digestion of the B subunits. Stable-isotope-labeled analogues were prepared and used as internal standards to identify and quantify these characteristic peptides. We were able to detect and quantify Shiga toxins (Stx), Shiga-like toxin type 1 (Stx1) and type 2 (Stx2) subtypes, and to distinguish among most of the known subtypes. The limit of detection for digested pure standards was in the low attomole range/injection (~10 attomoles), which corresponded to a concentration of 1.7 femtomol/mL. A matrix effect was observed when dilute samples were digested in the buffer, Luria broth, or mouse plasma (LOD ~ 30 attomol/injection = 5 femtomol/mL). In addition, we determined that the procedures necessary to perform our mass spectrometry-based analysis completely inactivate the toxins present in the sample. This is a safe and effective method of detecting and quantitating Stx, Stx1, and Stx2, since it does not require the use of intact toxins.


Subject(s)
Shiga Toxins/analysis , Amino Acid Sequence , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Hydrolysis , Molecular Sequence Data , Shiga Toxin 1/analysis , Shiga Toxin 1/toxicity , Shiga Toxin 2/analysis , Shiga Toxin 2/toxicity , Shiga Toxins/toxicity , Trypsin/chemistry , Vero Cells
2.
Toxins (Basel) ; 7(12): 5236-53, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26633510

ABSTRACT

Shiga-like toxins (verotoxins) are responsible for the virulence associated with a variety of foodborne bacterial pathogens. Direct detection of toxins requires a specific and sensitive technique. In this study, we describe a mass spectrometry-based method of analyzing the tryptic decapeptides derived from the non-toxic B subunits. A gene encoding a single protein that yields a set of relevant peptides upon digestion with trypsin was designed. The (15)N-labeled protein was prepared by growing the expressing bacteria in minimal medium supplemented with (15)NH4Cl. Trypsin digestion of the (15)N-labeled protein yields a set of (15)N-labeled peptides for use as internal standards to identify and quantify Shiga or Shiga-like toxins. We determined that this approach can be used to detect, quantify and distinguish among the known Shiga toxins (Stx) and Shiga-like toxins (Stx1 and Stx2) in the low attomole range (per injection) in complex media, including human serum. Furthermore, Stx1a could be detected and distinguished from the newly identified Stx1e in complex media. As new Shiga-like toxins are identified, this approach can be readily modified to detect them. Since intact toxins are digested with trypsin prior to analysis, the handling of intact Shiga toxins is minimized. The analysis can be accomplished within 5 h.


Subject(s)
Mass Spectrometry/methods , Shiga Toxin 1/blood , Shiga Toxin 2/blood , Humans , Peptides/analysis , Peptides/blood , Shiga Toxin 1/analysis , Shiga Toxin 2/analysis
SELECTION OF CITATIONS
SEARCH DETAIL