Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Publication year range
1.
Cell ; 187(18): 4981-4995.e14, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39059381

ABSTRACT

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Humans , Antibodies, Neutralizing/immunology , Plasmodium falciparum/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Malaria Vaccines/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Protozoan Proteins/immunology , Antibodies, Monoclonal/immunology , Adult , B-Lymphocytes/immunology , Epitopes/immunology , Female , Mali , Carrier Proteins/immunology , Male , Adolescent
2.
Immunity ; 57(8): 1769-1779.e4, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38901428

ABSTRACT

Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season. Baseline AAb seroprevalence increased with age and asymptomatic Plasmodium falciparum infection. We found that AAbs purified from the plasma of protected individuals inhibit the growth of blood-stage parasites and bind P. falciparum proteins that mediate parasite invasion. Protected individuals had higher plasma immunoglobulin G (IgG) reactivity against 33 of the 123 antigens assessed in an autoantigen microarray. This study provides evidence in support of the hypothesis that a propensity toward autoimmunity offers a survival advantage against malaria.


Subject(s)
Autoantibodies , Immunoglobulin G , Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/immunology , Autoantibodies/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Child , Child, Preschool , Adult , Immunoglobulin G/immunology , Immunoglobulin G/blood , Female , Mali , Male , Adolescent , Antibodies, Protozoan/immunology , Longitudinal Studies , Infant , Antigens, Protozoan/immunology , Young Adult , Autoantigens/immunology , Seroepidemiologic Studies , Middle Aged
3.
Nat Immunol ; 19(8): 871-884, 2018 08.
Article in English | MEDLINE | ID: mdl-29988090

ABSTRACT

B cells are activated by two temporally distinct signals, the first provided by the binding of antigen to the B cell antigen receptor (BCR), and the second provided by helper T cells. Here we found that B cells responded to antigen by rapidly increasing their metabolic activity, including both oxidative phosphorylation and glycolysis. In the absence of a second signal, B cells progressively lost mitochondrial function and glycolytic capacity, which led to apoptosis. Mitochondrial dysfunction was a result of the gradual accumulation of intracellular calcium through calcium response-activated calcium channels that, for approximately 9 h after the binding of B cell antigens, was preventable by either helper T cells or signaling via the receptor TLR9. Thus, BCR signaling seems to activate a metabolic program that imposes a limited time frame during which B cells either receive a second signal and survive or are eliminated.


Subject(s)
B-Lymphocytes/physiology , Mitochondria/metabolism , Receptors, Antigen, B-Cell/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Toll-Like Receptor 9/metabolism , Animals , Apoptosis , Calcium/metabolism , Calcium Channels/metabolism , Cytokines/metabolism , Glycolysis , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NIH 3T3 Cells , Oxidative Phosphorylation , Receptors, Antigen, B-Cell/genetics , Signal Transduction , Toll-Like Receptor 9/genetics
4.
Nat Immunol ; 19(3): 255-266, 2018 03.
Article in English | MEDLINE | ID: mdl-29476183

ABSTRACT

Key events in T cell-dependent antibody responses, including affinity maturation, are dependent on the B cell's presentation of antigen to helper T cells at critical checkpoints in germinal-center formation in secondary lymphoid organs. Here we found that signaling via Toll-like receptor 9 (TLR9) blocked the ability of antigen-specific B cells to capture, process and present antigen and to activate antigen-specific helper T cells in vitro. In a mouse model in vivo and in a human clinical trial, the TLR9 agonist CpG enhanced the magnitude of the antibody response to a protein vaccine but failed to promote affinity maturation. Thus, TLR9 signaling might enhance antibody titers at the expense of the ability of B cells to engage in germinal-center events that are highly dependent on B cells' capture and presentation of antigen.


Subject(s)
Antibody Formation/immunology , Antigen Presentation/genetics , Lymphocyte Activation/immunology , Toll-Like Receptor 9/immunology , Animals , Antibody Affinity , Germinal Center/immunology , Humans , Malaria Vaccines , Mice , Toll-Like Receptor 9/agonists
5.
Immunity ; 51(4): 750-765.e10, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31492649

ABSTRACT

Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.


Subject(s)
B-Lymphocytes/immunology , Blood Proteins/metabolism , Inflammation/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum/physiology , Th1 Cells/immunology , Th2 Cells/immunology , Tumor Suppressor Protein p53/metabolism , Adolescent , Adult , Animals , Antibodies, Protozoan/metabolism , Child , Child, Preschool , Disease Resistance , Female , Gene Expression Profiling , Humans , Infant , Interferons/metabolism , Male , Mice , Mice, Inbred C57BL , Prospective Studies , Receptors, Fc/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Young Adult
6.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38669354

ABSTRACT

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Subject(s)
Antibodies, Monoclonal, Humanized , Malaria, Falciparum , Adult , Child , Female , Humans , Male , Dose-Response Relationship, Drug , Double-Blind Method , Endemic Diseases/prevention & control , Injections, Subcutaneous , Kaplan-Meier Estimate , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali/epidemiology , Plasmodium falciparum , Treatment Outcome , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Directly Observed Therapy , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/therapeutic use , Young Adult , Middle Aged
7.
N Engl J Med ; 387(20): 1833-1842, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36317783

ABSTRACT

BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).


Subject(s)
Antibodies, Monoclonal, Humanized , Antimalarials , Malaria, Falciparum , Adult , Humans , Antimalarials/adverse effects , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Headache/chemically induced
8.
PLoS Pathog ; 17(4): e1009430, 2021 04.
Article in English | MEDLINE | ID: mdl-33822828

ABSTRACT

In malaria-naïve children and adults, Plasmodium falciparum-infected red blood cells (Pf-iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf-iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of uninfected, asymptomatic Malian individuals before the malaria season revealed that monocytes of adults produced lower levels of inflammatory cytokines (IL-1ß, IL-6 and TNF) in response to Pf-iRBC stimulation compared to monocytes of Malian children and malaria-naïve U.S. adults. Moreover, monocytes of Malian children produced lower levels of IL-1ß and IL-6 following Pf-iRBC stimulation compared to 4-6-month-old infants. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf-iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. Trial Registration: ClinicalTrials.gov NCT01322581.


Subject(s)
Malaria, Falciparum/immunology , Malaria/immunology , Monocytes/metabolism , Phenotype , Adult , Child , Child, Preschool , Cytokines/metabolism , Erythrocytes/metabolism , Humans , Infant , Inflammation/immunology , Inflammation/metabolism , Macrophages/metabolism , Malaria/blood , Malaria, Falciparum/blood , Monocytes/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism
9.
Immunity ; 39(2): 245-58, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23911655

ABSTRACT

Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Base Sequence , Broadly Neutralizing Antibodies , Crystallography, X-Ray , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , Humans , Leukocytes, Mononuclear , Molecular Sequence Data , Sequence Analysis, DNA
10.
Malar J ; 20(1): 9, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407502

ABSTRACT

BACKGROUND: Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function. METHODS: In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n = 27) or asymptomatically infected with P. falciparum (n = 8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n = 19) with acute symptomatic malaria. RESULTS: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria. CONCLUSIONS: The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


Subject(s)
Cytokines/blood , Dendritic Cells/parasitology , Malaria, Falciparum/blood , Adult , Asymptomatic Infections , Chemokines/blood , Child , Child, Preschool , Cross-Sectional Studies , Erythrocytes/parasitology , Female , Humans , Malaria/blood , Male , Mali , Middle Aged , Phenotype , Plasmodium falciparum/physiology
11.
Infect Immun ; 88(3)2020 02 20.
Article in English | MEDLINE | ID: mdl-31907195

ABSTRACT

Natural killer (NK) cells are key effector cells of innate resistance capable of destroying tumors and virus-infected cells through cytotoxicity and rapid cytokine production. The control of NK cell responses is complex and only partially understood. PD-1 is an inhibitory receptor that regulates T cell function, but a role for PD-1 in regulating NK cell function is only beginning to emerge. Here, we investigated PD-1 expression on NK cells in children and adults in Mali in a longitudinal analysis before, during, and after infection with Plasmodium falciparum malaria. We found that NK cells transiently upregulate PD-1 expression and interleukin-6 (IL-6) production in some individuals during acute febrile malaria. Furthermore, the percentage of PD-1 expressing NK cells increases with age and cumulative malaria exposure. Consistent with this, NK cells of malaria-naive adults upregulated PD-1 following P. falciparum stimulation in vitro Additionally, functional in vitro studies revealed that PD-1 expression on NK cells is associated with diminished natural cytotoxicity but enhanced antibody-dependent cellular cytotoxicity (ADCC). These data indicate that PD-1+ NK cells expand in the context of chronic immune activation and suggest that PD-1 may contribute to skewing NK cells toward enhanced ADCC during infections such as malaria.


Subject(s)
Killer Cells, Natural/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/pathogenicity , Programmed Cell Death 1 Receptor/metabolism , Adult , Age Factors , Animals , Antibody-Dependent Cell Cytotoxicity , CD56 Antigen/metabolism , Cell Line , Child , GPI-Linked Proteins/metabolism , Humans , Interleukin-6/metabolism , K562 Cells , Longitudinal Studies , Malaria/immunology , Mice , Receptors, IgG/metabolism
12.
J Immunol ; 201(10): 2879-2884, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30315139

ABSTRACT

Early secretion of IL-12 by mouse dendritic cells (DCs) instructs T cells to make IFN-γ. However, only activated, but not naive T cells are able to license DCs for IL-12 production. We hypothesized that it might be due to different levels of CD40L expression on the surface of these cells, as CD40 signals are required for IL-12 production. Using quantitative cell-free systems incorporating CD40L in lipid bilayers combined with total internal reflection fluorescence microscopy and flow cytometry, we show that as low as ∼200 CD40L molecules/µm2 in combination with IL-4 is sufficient to induce IL-12 production by DCs. Remarkably, CD40L alone is adequate to induce IL-23 secretion by DCs. Thus, although activated T cells have somewhat higher levels of CD40L, it is the combination of CD40L and the cytokines they secrete that licenses DCs and influences the effector class of the immune response.


Subject(s)
CD40 Ligand/immunology , Dendritic Cells/immunology , Interleukin-12/biosynthesis , Interleukin-23/biosynthesis , Lymphocyte Activation/immunology , Animals , Dendritic Cells/metabolism , Interleukin-12/immunology , Interleukin-23/immunology , Mice , Mice, Transgenic
13.
PLoS Pathog ; 13(9): e1006576, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28953967

ABSTRACT

Many chronic infections, including malaria and HIV, are associated with a large expansion of CD21-CD27- 'atypical' memory B cells (MBCs) that exhibit reduced B cell receptor (BCR) signaling and effector functions. Little is known about the conditions or transcriptional regulators driving atypical MBC differentiation. Here we show that atypical MBCs in malaria-exposed individuals highly express the transcription factor T-bet, and that T-bet expression correlates inversely with BCR signaling and skews toward IgG3 class switching. Moreover, a longitudinal analysis of a subset of children suggested a correlation between the incidence of febrile malaria and the expansion of T-bethi B cells. The Th1-cytokine containing supernatants of malaria-stimulated PBMCs plus BCR cross linking induced T-bet expression in naïve B cells that was abrogated by neutralizing IFN-γ or blocking the IFN-γ receptor on B cells. Accordingly, recombinant IFN-γ plus BCR cross-linking drove T-bet expression in peripheral and tonsillar B cells. Consistent with this, Th1-polarized Tfh (Tfh-1) cells more efficiently induced T-bet expression in naïve B cells. These data provide new insight into the mechanisms underlying atypical MBC differentiation.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Gene Expression Regulation/immunology , Immunologic Memory/immunology , Interferon-gamma/biosynthesis , Malaria/immunology , Adolescent , Adult , Child , Child, Preschool , Female , Fetal Proteins/metabolism , Humans , Infant , Malaria/metabolism , Male , Receptors, Antigen, B-Cell/metabolism , T-Box Domain Proteins/metabolism , Young Adult
14.
J Immunol ; 197(10): 3841-3849, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27798155

ABSTRACT

Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4+ plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4+ peripheral blood CD19+ B cells was similar in United States adults and African adults and children; however, more 9G4+ B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4+ IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4+ B cells acquired phenotypes of atypical and classical memory B cells and 9G4+ IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4+ B cells and 9G4+ IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.


Subject(s)
Antibodies, Protozoan/blood , Autoimmunity , B-Lymphocytes/immunology , Immunoglobulin G/blood , Immunoglobulin Heavy Chains/immunology , Malaria, Falciparum/immunology , Adult , Africa, Western/epidemiology , Antibodies, Protozoan/immunology , B-Lymphocytes/chemistry , Child , Endemic Diseases , Gene Expression Regulation , Humans , Immunity, Humoral , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin M/blood , Immunoglobulin M/immunology , Malaria/epidemiology , Malaria/immunology , Malaria, Falciparum/epidemiology , Phenotype , Plasmodium falciparum/immunology , United States/epidemiology
15.
Proc Natl Acad Sci U S A ; 112(32): E4438-47, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26216993

ABSTRACT

Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.


Subject(s)
Biomarkers/blood , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Residence Characteristics , Antibodies, Protozoan/immunology , Antibody Formation/immunology , Antibody Specificity/immunology , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Gene Ontology , Geography , Humans , Incidence , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Male , Mali/epidemiology , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , ROC Curve , Treatment Outcome , Uganda/epidemiology
16.
Clin Infect Dis ; 64(5): 645-653, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28362910

ABSTRACT

Background: Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. Methods: In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. Results: Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. Conclusions: These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria.


Subject(s)
Malaria, Falciparum/epidemiology , Plasmodium falciparum , Adolescent , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Asymptomatic Infections , Child , Child, Preschool , Chronic Disease , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Mali/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Population Surveillance , Risk , Seasons , Young Adult
17.
J Immunol ; 194(3): 929-39, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25556245

ABSTRACT

Immunity to Plasmodium falciparum malaria is naturally acquired in individuals living in malaria-endemic areas of Africa. Abs play a key role in mediating this immunity; however, the acquisition of the components of Ab immunity, long-lived plasma cells and memory B cells (MBCs), is remarkably inefficient, requiring years of malaria exposure. Although long-lived classical MBCs (CD19(+)/CD20(+)/CD21(+)/CD27(+)/CD10(-)) are gradually acquired in response to natural infection, exposure to P. falciparum also results in a large expansion of what we have termed atypical MBCs (CD19(+)/CD20(+)/CD21(-)/CD27(-)/CD10(-)). At present, the function of atypical MBCs in malaria is not known, nor are the factors that drive their differentiation. To gain insight into the relationship between classical and atypical IgG(+) MBCs, we compared the Ab H and L chain V gene repertoires of children living in a malaria-endemic region in Mali. We found that these repertoires were remarkably similar by a variety of criteria, including V gene usage, rate of somatic hypermutation, and CDR-H3 length and composition. The similarity in these repertoires suggests that classical MBCs and atypical MBCs differentiate in response to similar Ag-dependent selective pressures in malaria-exposed children and that atypical MBCs do not express a unique V gene repertoire.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Disease Susceptibility , Immunoglobulin Variable Region/genetics , Immunologic Memory/genetics , Malaria/genetics , Malaria/immunology , Africa, Western , Amino Acid Sequence , Antigens, Protozoan/immunology , Child , Child, Preschool , Cohort Studies , Complementarity Determining Regions/genetics , Female , Gene Rearrangement, B-Lymphocyte , Genetic Variation , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Variable Region/chemistry , Immunophenotyping , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Male , Plasmodium falciparum/immunology , Somatic Hypermutation, Immunoglobulin
18.
Mol Cell Proteomics ; 14(3): 519-31, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25547414

ABSTRACT

The leading malaria vaccine candidate, RTS,S, targets the sporozoite and liver stages of the Plasmodium falciparum life cycle, yet it provides partial protection against disease associated with the subsequent blood stage of infection. Antibodies against the vaccine target, the circumsporozoite protein, have not shown sufficient correlation with risk of clinical malaria to serve as a surrogate for protection. The mechanism by which a vaccine that targets the asymptomatic sporozoite and liver stages protects against disease caused by blood-stage parasites remains unclear. We hypothesized that vaccination with RTS,S protects from blood-stage disease by reducing the number of parasites emerging from the liver, leading to prolonged exposure to subclinical levels of blood-stage parasites that go undetected and untreated, which in turn boosts pre-existing antibody-mediated blood-stage immunity. To test this hypothesis, we compared antibody responses to 824 P. falciparum antigens by protein array in Mozambican children 6 months after receiving a full course of RTS,S (n = 291) versus comparator vaccine (n = 297) in a Phase IIb trial. Moreover, we used a nested case-control design to compare antibody responses of children who did or did not experience febrile malaria. Unexpectedly, we found that the breadth and magnitude of the antibody response to both liver and asexual blood-stage antigens was significantly lower in RTS,S vaccinees, with the exception of only four antigens, including the RTS,S circumsporozoite antigen. Contrary to our initial hypothesis, these findings suggest that RTS,S confers protection against clinical malaria by blocking sporozoite invasion of hepatocytes, thereby reducing exposure to the blood-stage parasites that cause disease. We also found that antibody profiles 6 months after vaccination did not distinguish protected and susceptible children during the subsequent 12-month follow-up period but were strongly associated with exposure. Together, these data provide insight into the mechanism by which RTS,S protects from malaria.


Subject(s)
Liver/parasitology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Plasmodium falciparum/drug effects , Plasmodium falciparum/immunology , Antigens, Protozoan/immunology , Case-Control Studies , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Malaria, Falciparum/parasitology , Mozambique , Plasmodium falciparum/physiology , Protein Array Analysis , Sporozoites/drug effects , Sporozoites/immunology
19.
PLoS Pathog ; 10(4): e1004079, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24743880

ABSTRACT

In malaria-naïve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells (iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected are often asymptomatic and have low levels of iRBCs, even young children. We hypothesized that febrile malaria alters the immune system such that P. falciparum re-exposure results in reduced production of pro-inflammatory cytokines/chemokines and enhanced anti-parasite effector responses compared to responses induced before malaria. To test this hypothesis we used a systems biology approach to analyze PBMCs sampled from healthy children before the six-month malaria season and the same children seven days after treatment of their first febrile malaria episode of the ensuing season. PBMCs were stimulated with iRBC in vitro and various immune parameters were measured. Before the malaria season, children's immune cells responded to iRBCs by producing pro-inflammatory mediators such as IL-1ß, IL-6 and IL-8. Following malaria there was a marked shift in the response to iRBCs with the same children's immune cells producing lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines (IL-10, TGF-ß). In addition, molecules involved in phagocytosis and activation of adaptive immunity were upregulated after malaria as compared to before. This shift was accompanied by an increase in P. falciparum-specific CD4+Foxp3- T cells that co-produce IL-10, IFN-γ and TNF; however, after the subsequent six-month dry season, a period of markedly reduced malaria transmission, P. falciparum-inducible IL-10 production remained partially upregulated only in children with persistent asymptomatic infections. These findings suggest that in the face of P. falciparum re-exposure, children acquire exposure-dependent P. falciparum-specific immunoregulatory responses that dampen pathogenic inflammation while enhancing anti-parasite effector mechanisms. These data provide mechanistic insight into the observation that P. falciparum-infected children in endemic areas are often afebrile and tend to control parasite replication.


Subject(s)
Adaptive Immunity , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , CD4-Positive T-Lymphocytes/metabolism , Child , Child, Preschool , Cytokines/blood , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Male , Plasmodium falciparum/metabolism
20.
Proc Natl Acad Sci U S A ; 110(16): 6470-5, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23536288

ABSTRACT

Next-generation sequencing of antibody transcripts from HIV-1-infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy- and light-chain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy- and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141-145. Heavy- and light-chain phylogenetic trees of PGT141-145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141-145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Databases, Genetic , HIV-1/immunology , Models, Molecular , Phylogeny , Amino Acid Sequence , Computational Biology , Enzyme-Linked Immunosorbent Assay , High-Throughput Nucleotide Sequencing , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Molecular Sequence Data , Neutralization Tests , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL