Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-34908534

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome, constituted by respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal, and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, key outstanding questions are whether COVID-19 drives a unique program of neutrophil activation or effector functions that contribute to the severe pathogenesis of this pandemic illness and whether this unique neutrophil response can be targeted to attenuate disease. Using a combination of high-dimensional single-cell analysis and ex vivo functional assays of neutrophils from patients with COVID-19 ARDS, compared with those with non-COVID ARDS (caused by bacterial pneumonia), we identified a functionally distinct landscape of neutrophil activation in COVID-19 ARDS that was intrinsically programmed during SARS-CoV-2 infection. Furthermore, neutrophils in COVID-19 ARDS were functionally primed to produce high amounts of neutrophil extracellular traps. Surprisingly, this unique pathological program of neutrophil priming escaped conventional therapy with dexamethasone, thereby revealing a promising target for adjunctive immunotherapy in severe COVID-19.


Subject(s)
COVID-19/immunology , Extracellular Traps/immunology , Neutrophil Activation , Neutrophils/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Female , Humans , Male , Middle Aged , Neutrophils/pathology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/pathology , Respiratory Distress Syndrome/pathology , Severity of Illness Index
2.
J Am Heart Assoc ; 10(9): e019811, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33878890

ABSTRACT

Background The overlap between cancer and cardiovascular care continues to expand, with intersections emerging before, during, and following cancer therapies. To date, emphasis has been placed on how cancer therapeutics influence downstream cardiac health. However, whether active malignancy itself influences chamber volumes, function, or overall myocardial tissue health remains uncertain. We sought to perform a comprehensive cardiovascular magnetic resonance-based evaluation of cardiac health in patients with chemotherapy-naïve cancer with comparison with a healthy volunteer population. Methods and Results Three-hundred and eighty-one patients with active breast cancer or lymphoma before cardiotoxic chemotherapy exposure were recruited in addition to 102 healthy volunteers. Both cohorts underwent standardized cardiovascular magnetic resonance imaging with quantification of chamber volumes, ejection fraction, and native myocardial T1. Left ventricular mechanics were incrementally assessed using three-dimensional myocardial deformation analysis, providing global longitudinal, circumferential, radial, and principal peak-systolic strain amplitude and systolic strain rate. The mean age of patients with cancer was 53.8±13.4 years; 79% being women. Despite similar left ventricular ejection fraction, patients with cancer showed smaller chambers, increased strain amplitude, and systolic strain rate in both conventional and principal directions, and elevated native T1 versus sex-matched healthy volunteers. Adjusting for age, sex, hypertension, and diabetes mellitus, the presence of cancer remained associated with these cardiovascular magnetic resonance parameters. Conclusions The presence of cancer is independently associated with alterations in cardiac chamber size, function, and objective markers of tissue health. Dedicated research is warranted to elucidate pathophysiologic mechanisms underlying these findings and to explore their relevance to the management of patients with cancer referred for cardiotoxic therapies.


Subject(s)
Antineoplastic Agents/adverse effects , Heart Ventricles/drug effects , Magnetic Resonance Imaging, Cine/methods , Myocardial Contraction/physiology , Myocardium/pathology , Neoplasms/drug therapy , Ventricular Dysfunction, Left/etiology , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Female , Follow-Up Studies , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Neoplasms/complications , Phenotype , Retrospective Studies , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL