Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Am Chem Soc ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37923569

ABSTRACT

SynTEF1, a prototype synthetic genome reader/regulator (SynGR), was designed to target GAA triplet repeats and restore the expression of frataxin (FXN) in Friedreich's ataxia patients. It achieves this complex task by recruiting BRD4, via a pan-BET ligand (JQ1), to the GAA repeats by using a sequence-selective DNA-binding polyamide. When bound to specific genomic loci in this way, JQ1 functions as a chemical prosthetic for acetyl-lysine residues that are natural targets of the two tandem bromodomains (BD1 and BD2) in bromo- and extra-terminal domain (BET) proteins. As next-generation BET ligands were disclosed, we tested a select set with improved physicochemical, pharmacological, and bromodomain-selective properties as substitutes for JQ1 in the SynGR design. Here, we report two unexpected findings: (1) SynGRs bearing pan-BET or BD2-selective ligands license transcription at the FXN locus, whereas those bearing BD1-selective ligands do not, and (2) rather than being neutral or inhibitory, an untethered BD1-selective ligand (GSK778) substantively enhances the activity of all active SynGRs. The failure of BD1-selective SynGRs to recruit BRD4/BET proteins suggests that rather than functioning as "epigenetic/chromatin mimics," active SynGRs mimic the functions of natural transcription factors in engaging BET proteins through BD2 binding. Moreover, the enhanced activity of SynGRs upon cotreatment with the BD1-selective ligand suggests that natural transcription factors compete for a limited pool of nonchromatin-bound BET proteins, and blocking BD1 directs pan-BET ligands to more effectively engage BD2. Taken together, SynGRs as chemical probes provide unique insights into the molecular recognition principles utilized by natural factors to precisely regulate gene expression, and they guide the design of more sophisticated synthetic gene regulators with greater therapeutic potential.

2.
Proc Natl Acad Sci U S A ; 113(13): 3669-74, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26976575

ABSTRACT

The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. These mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containing the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. Using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.


Subject(s)
Endonucleases/antagonists & inhibitors , Endonucleases/genetics , Enzyme Inhibitors/pharmacology , Hydroxybutyrates/pharmacology , Influenza A virus/drug effects , Piperidines/pharmacology , Animals , Catalytic Domain/genetics , Crystallography, X-Ray , Dogs , Drug Resistance, Viral/genetics , Endonucleases/metabolism , Genetic Variation , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/enzymology , Influenza A virus/genetics , Kinetics , Madin Darby Canine Kidney Cells , Models, Molecular , Mutagenesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
3.
PLoS Pathog ; 8(8): e1002830, 2012.
Article in English | MEDLINE | ID: mdl-22876176

ABSTRACT

Emerging influenza viruses are a serious threat to human health because of their pandemic potential. A promising target for the development of novel anti-influenza therapeutics is the PA protein, whose endonuclease activity is essential for viral replication. Translation of viral mRNAs by the host ribosome requires mRNA capping for recognition and binding, and the necessary mRNA caps are cleaved or "snatched" from host pre-mRNAs by the PA endonuclease. The structure-based development of inhibitors that target PA endonuclease is now possible with the recent crystal structure of the PA catalytic domain. In this study, we sought to understand the molecular mechanism of inhibition by several compounds that are known or predicted to block endonuclease-dependent polymerase activity. Using an in vitro endonuclease activity assay, we show that these compounds block the enzymatic activity of the isolated PA endonuclease domain. Using X-ray crystallography, we show how these inhibitors coordinate the two-metal endonuclease active site and engage the active site residues. Two structures also reveal an induced-fit mode of inhibitor binding. The structures allow a molecular understanding of the structure-activity relationship of several known influenza inhibitors and the mechanism of drug resistance by a PA mutation. Taken together, our data reveal new strategies for structure-based design and optimization of PA endonuclease inhibitors.


Subject(s)
Drug Design , Endoribonucleases , Enzyme Inhibitors/chemistry , Influenza A Virus, H5N1 Subtype/enzymology , Molecular Docking Simulation , RNA-Dependent RNA Polymerase , Viral Proteins , Animals , Cell Line , Chick Embryo , Chickens , Crystallography, X-Ray , Dogs , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/chemistry , Enzyme Inhibitors/pharmacology , Humans , Influenza in Birds/drug therapy , Influenza in Birds/enzymology , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , Structure-Activity Relationship , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry
4.
iScience ; 25(10): 105064, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36147946

ABSTRACT

Poration of the outer mitochondrial membrane by the effector BCL-2 proteins BAK and BAX initiates apoptosis. BH3-only initiators BID and BIM trigger conformational changes in BAK and BAX transforming them from globular dormant proteins to oligomers of the apoptotic pores. Small molecules that can directly activate effectors are being sought for applications in cancer treatment. Here, we describe the small molecule SJ572946, discovered in a fragment-based screen that binds to the activation groove of BAK and selectively triggers BAK activation over that of BAX in liposome and mitochondrial permeabilization assays. SJ572946 independently kills BAK-expressing BCL2allKO HCT116 cells revealing on target cellular activity. In combination with apoptotic inducers and BH3 mimetics, SJ572946 kills experimental cancer cell lines. SJ572946 also cooperates with the endogenous BAK activator BID in activating a misfolded BAK mutant substantially impaired in activation. SJ572946 is a proof-of-concept tool for probing BAK-mediated apoptosis in preclinical cancer research.

5.
Bioorg Med Chem Lett ; 21(15): 4592-6, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21708465

ABSTRACT

We report the synthesis of a pyrimidinone library that targets anaplastic lymphoma kinase (ALK), an oncogenic receptor tyrosine kinase. This library was generated in three steps from a versatile commercially available starting material. Some compounds within this library showed single digit micromolar inhibition of ALK in vitro, while showing minimal inhibition of other homologous insulin receptor family kinases including the human insulin receptor kinase (IRK), at the highest concentrations investigated. We also present initial ALK structure-activity relationships for this library.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Pyrimidinones/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Anaplastic Lymphoma Kinase , Antigens, CD/metabolism , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Structure-Activity Relationship
6.
Org Lett ; 23(16): 6288-6292, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34379431

ABSTRACT

Isotopically labeled amino acids are widely used to study the structure and dynamics of proteins by NMR. Herein we describe a facile, gram-scale synthesis of compounds 1b and 2b under standard laboratory conditions from the common intermediate 7. 2b is obtained via simple deprotection, while 1b is accessed through a reductive deoxygenation/deuteration sequence and deprotection. 1b and 2b provide improved signal intensity using lower amounts of labeled precursor and are alternatives to existing labeling approaches.


Subject(s)
Phenylalanine/chemistry , Tyrosine/chemical synthesis , Amino Acids , Isotope Labeling , Magnetic Resonance Spectroscopy , Molecular Structure , Proteins , Tyrosine/chemistry
7.
J Med Chem ; 64(11): 7296-7311, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34042448

ABSTRACT

Whereas the PROTAC approach to target protein degradation greatly benefits from rational design, the discovery of small-molecule degraders relies mostly on phenotypic screening and retrospective target identification efforts. Here, we describe the design, synthesis, and screening of a large diverse library of thalidomide analogues against a panel of patient-derived leukemia and medulloblastoma cell lines. These efforts led to the discovery of potent and novel GSPT1/2 degraders displaying selectivity over classical IMiD neosubstrates, such as IKZF1/3, and high oral bioavailability in mice. Taken together, this study offers compound 6 (SJ6986) as a valuable chemical probe for studying the role of GSPT1/2 in vitro and in vivo, and it supports the utility of a diverse library of CRBN binders in the pursuit of targeting undruggable oncoproteins.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Peptide Termination Factors/metabolism , Proteolysis/drug effects , Small Molecule Libraries/pharmacology , Ubiquitin-Protein Ligases/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Administration, Oral , Animals , Binding Sites , Cell Line, Tumor , Half-Life , Humans , Ikaros Transcription Factor/metabolism , Mice , Molecular Dynamics Simulation , Retrospective Studies , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Structure-Activity Relationship , Thalidomide/administration & dosage , Thalidomide/analogs & derivatives , Thalidomide/metabolism , Thalidomide/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Cancer Res ; 80(17): 3507-3518, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32651255

ABSTRACT

Inhibition of members of the bromodomain and extraterminal (BET) family of proteins has proven a valid strategy for cancer chemotherapy. All BET identified to date contain two bromodomains (BD; BD1 and BD2) that are necessary for recognition of acetylated lysine residues in the N-terminal regions of histones. Chemical matter that targets BET (BETi) also interact via these domains. Molecular and cellular data indicate that BD1 and BD2 have different biological roles depending upon their cellular context, with BD2 particularly associated with cancer. We have therefore pursued the development of BD2-selective molecules both as chemical probes and as potential leads for drug development. Here we report the structure-based generation of a novel series of tetrahydroquinoline analogs that exhibit >50-fold selectivity for BD2 versus BD1. This selective targeting resulted in engagement with BD-containing proteins in cells, resulting in modulation of MYC proteins and downstream targets. These compounds were potent cytotoxins toward numerous pediatric cancer cell lines and were minimally toxic to nontumorigenic cells. In addition, unlike the pan BETi (+)-JQ1, these BD2-selective inhibitors demonstrated no rebound expression effects. Finally, we report a pharmacokinetic-optimized, metabolically stable derivative that induced growth delay in a neuroblastoma xenograft model with minimal toxicity. We conclude that BD2-selective agents are valid candidates for antitumor drug design for pediatric malignancies driven by the MYC oncogene. SIGNIFICANCE: This study presents bromodomain-selective BET inhibitors that act as antitumor agents and demonstrates that these molecules have in vivo activity towards neuroblastoma, with essentially no toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Neoplasms , Transcription Factors/antagonists & inhibitors , Animals , Cell Line, Tumor , Child , Female , Humans , Mice , Mice, SCID , Neoplasms/genetics , Neoplasms/metabolism , Protein Domains , Proto-Oncogene Proteins c-myc/genetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL