Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Natl Acad Sci U S A ; 116(2): 546-555, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30584103

ABSTRACT

SENCR is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of SENCR in these and other cell types is unknown. Here, levels of SENCR RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress. Increases in SENCR RNA are also observed in the laminar shear stress region of the adult aorta of humanized SENCR-expressing mice, but not in disturbed shear stress regions. SENCR loss-of-function studies disclose perturbations in EC membrane integrity resulting in increased EC permeability. Biotinylated RNA pull-down and mass spectrometry establish an abundant SENCR-binding protein, cytoskeletal-associated protein 4 (CKAP4); this ribonucleoprotein complex was further confirmed in an RNA immunoprecipitation experiment using an antibody to CKAP4. Structure-function studies demonstrate a noncanonical RNA-binding domain in CKAP4 that binds SENCR Upon SENCR knockdown, increasing levels of CKAP4 protein are detected in the EC surface fraction. Furthermore, an interaction between CKAP4 and CDH5 is enhanced in SENCR-depleted EC. This heightened association appears to destabilize the CDH5/CTNND1 complex and augment CDH5 internalization, resulting in impaired adherens junctions. These findings support SENCR as a flow-responsive lncRNA that promotes EC adherens junction integrity through physical association with CKAP4, thereby stabilizing cell membrane-bound CDH5.


Subject(s)
Adherens Junctions/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Membrane Proteins/metabolism , RNA, Long Noncoding/metabolism , Adherens Junctions/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Catenins/genetics , Catenins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Membrane Proteins/genetics , Protein Domains , RNA, Long Noncoding/genetics , Shear Strength/physiology , Delta Catenin
2.
Proc Natl Acad Sci U S A ; 114(13): E2739-E2747, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28292896

ABSTRACT

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling.


Subject(s)
Abnormalities, Multiple/genetics , Autoantigens/physiology , Colon/abnormalities , Cytoskeletal Proteins/physiology , Intestinal Pseudo-Obstruction/genetics , Muscle Proteins/physiology , Urinary Bladder/abnormalities , Animals , Autoantigens/genetics , Autoantigens/metabolism , Codon, Nonsense , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Female , Humans , Infant, Newborn , Mice , Muscle Contraction/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Smooth/physiology
3.
Arterioscler Thromb Vasc Biol ; 38(9): 2184-2190, 2018 09.
Article in English | MEDLINE | ID: mdl-29976770

ABSTRACT

Objective- Unreliable antibodies often hinder the accurate detection of an endogenous protein, and this is particularly true for the cardiac and smooth muscle cofactor, MYOCD (myocardin). Accordingly, the mouse Myocd locus was targeted with 2 independent epitope tags for the unambiguous expression, localization, and activity of MYOCD protein. Approach and Results- 3cCRISPR (3-component clustered regularly interspaced short palindromic repeat) was used to engineer a carboxyl-terminal 3×FLAG or 3×HA epitope tag in mouse embryos. Western blotting with antibodies to each tag revealed a MYOCD protein product of ≈150 kDa, a size considerably larger than that reported in virtually all publications. MYOCD protein was most abundant in some adult smooth muscle-containing tissues with surprisingly low-level expression in the heart. Both alleles of Myocd are active in aorta because a 2-fold increase in protein was seen in mice homozygous versus heterozygous for FLAG-tagged Myocd. ChIP (chromatin immunoprecipitation)-quantitative polymerase chain reaction studies provide proof-of-principle data demonstrating the utility of this mouse line in conducting genome-wide ChIP-seq studies to ascertain the full complement of MYOCD-dependent target genes in vivo. Although FLAG-tagged MYOCD protein was undetectable in sections of adult mouse tissues, low-passaged vascular smooth muscle cells exhibited expected nuclear localization. Conclusions- This report validates new mouse models for analyzing MYOCD protein expression, localization, and binding activity in vivo and highlights the need for rigorous authentication of antibodies in biomedical research.


Subject(s)
CRISPR-Cas Systems , Epitope Mapping/methods , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/analysis , Nuclear Proteins/metabolism , Trans-Activators/analysis , Trans-Activators/metabolism , Animals , Embryo, Mammalian , Epitopes/analysis , Mice , Muscle, Smooth, Vascular/chemistry , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/chemistry
4.
J Am Soc Nephrol ; 29(2): 416-422, 2018 02.
Article in English | MEDLINE | ID: mdl-29114040

ABSTRACT

Podocytes contain an intricate actin cytoskeleton that is essential for the specialized function of this cell type in renal filtration. Serum response factor (SRF) is a master transcription factor for the actin cytoskeleton, but the in vivo expression and function of SRF in podocytes are unknown. We found that SRF protein colocalizes with podocyte markers in human and mouse kidneys. Compared with littermate controls, mice in which the Srf gene was conditionally inactivated with NPHS2-Cre exhibited early postnatal proteinuria, hypoalbuminemia, and azotemia. Histologic changes in the mutant mice included glomerular capillary dilation and mild glomerulosclerosis, with reduced expression of multiple canonical podocyte markers. We also noted tubular dilation, cell proliferation, and protein casts as well as reactive changes in mesangial cells and interstitial inflammation. Ultrastructure analysis disclosed foot process effacement with loss of slit diaphragms. To ascertain the importance of SRF cofactors in podocyte function, we disabled the myocardin-related transcription factor A and B genes. Although loss of either SRF cofactor alone had no observable effect in the kidney, deficiency of both recapitulated the Srf-null phenotype. These results establish a vital role for SRF and two SRF cofactors in the maintenance of podocyte structure and function.


Subject(s)
Actins/metabolism , Podocytes/metabolism , Podocytes/ultrastructure , Serum Response Factor/physiology , Trans-Activators/genetics , Transcription Factors/genetics , Actinin/genetics , Actins/genetics , Animals , Cytoskeleton , Dilatation, Pathologic/genetics , Female , Humans , Kidney Tubules, Distal/pathology , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Knockout , Podocytes/physiology , RNA, Messenger/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Repressor Proteins/genetics , Serum Response Factor/genetics , WT1 Proteins
5.
Arterioscler Thromb Vasc Biol ; 35(2): 312-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25538209

ABSTRACT

OBJECTIVE: To ascertain the importance of a single regulatory element in the control of Cnn1 expression using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genome editing. APPROACH AND RESULTS: The CRISPR/Cas9 system was used to produce 3 of 18 founder mice carrying point mutations in an intronic CArG box of the smooth muscle cell-restricted Cnn1 gene. Each founder was bred for germline transmission of the mutant CArG box and littermate interbreeding to generate homozygous mutant (Cnn1(ΔCArG/ΔCArG)) mice. Quantitative reverse transcription polymerase chain reaction, Western blotting, and confocal immunofluorescence microscopy showed dramatic reductions in Cnn1 mRNA and CNN1 protein expression in Cnn1(ΔCArG/ΔCArG) mice with no change in other smooth muscle cell-restricted genes and little evidence of off-target edits elsewhere in the genome. In vivo chromatin immunoprecipitation assay revealed a sharp decrease in binding of serum response factor to the mutant CArG box. Loss of CNN1 expression was coincident with an increase in Ki-67 positive cells in the normal vessel wall. CONCLUSIONS: CRISPR/Cas9 genome editing of a single CArG box nearly abolishes Cnn1 expression in vivo and evokes increases in smooth muscle cell DNA synthesis. This facile genome editing system paves the way for a new generation of studies designed to test the importance of individual regulatory elements in living animals, including regulatory variants in conserved sequence blocks linked to human disease.


Subject(s)
CRISPR-Cas Systems/genetics , Calcium-Binding Proteins/genetics , Microfilament Proteins/genetics , Point Mutation , Regulatory Elements, Transcriptional/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Proliferation , Down-Regulation , Homozygote , Introns , Ki-67 Antigen/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phenotype , RNA, Messenger/metabolism , Calponins
6.
J Cell Physiol ; 228(9): 1819-26, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23359472

ABSTRACT

Overactive bladder (OAB) is a pervasive clinical problem involving alterations in both neurogenic and myogenic activity. While there has been some progress in understanding neurogenic inputs to OAB, the mechanisms controlling myogenic bladder activity are unclear. We report the involvement of myocardin (MYOCD) and microRNA-1 (miR-1) in the regulation of connexin 43 (GJA1), a major gap junction in bladder smooth muscle, and the collective role of these molecules during post-natal bladder development. Wild-type (WT) mouse bladders showed normal development from early post-natal to adult including increases in bladder capacity and maintenance of normal sensitivity to cholinergic agents concurrent with down-regulation of MYOCD and several smooth muscle cell (SMC) contractile genes. Myocardin heterozygous-knockout mice exhibited reduced expression of Myocd mRNA and several SMC contractile genes concurrent with bladder SMC hypersensitivity that was mediated by gap junctions. In both cultured rat bladder SMC and in vivo bladders, MYOCD down-regulated GJA1 expression through miR-1 up-regulation. Interestingly, adult myocardin heterozygous-knockout mice showed normal increases in bladder and body weight but lower bladder capacity compared to WT mice. These results suggest that MYOCD down-regulates GJA1 expression via miR-1 up-regulation, thereby contributing to maintenance of normal sensitivity and development of bladder capacity.


Subject(s)
Connexin 43/genetics , MicroRNAs/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Urinary Bladder/physiology , Animals , Cell Differentiation , Cells, Cultured , Connexin 43/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , MicroRNAs/metabolism , Muscle Contraction/physiology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/metabolism , Rats , Trans-Activators/metabolism , Up-Regulation , Urinary Bladder/metabolism , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/physiopathology
7.
Arterioscler Thromb Vasc Biol ; 31(10): 2172-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21817093

ABSTRACT

OBJECTIVE: Smooth muscle calponin (CNN1) contains multiple conserved intronic CArG elements that bind serum response factor and display enhancer activity in vitro. The objectives here were to evaluate these CArG elements for activity in transgenic mice and determine the effect of human CNN1 on injury-induced vascular remodeling. METHODS AND RESULTS: Mice carrying a lacZ reporter under control of intronic CArG elements in the human CNN1 gene failed to show smooth muscle cell (SMC)-restricted activity. However, deletion of the orthologous sequences in mice abolished endogenous Cnn1 promoter activity, suggesting their necessity for in vivo Cnn1 expression. Mice carrying a 38-kb bacterial artificial chromosome (BAC) harboring the human CNN1 gene displayed SMC- restricted expression of the corresponding CNN1 protein, as measured by immunohistochemistry and Western blotting. Extensive BAC recombineering studies revealed the absolute necessity of a single intronic CArG element for correct SMC-restricted expression of human CNN1. Overexpressing human CNN1 suppressed neointimal formation following arterial injury. Mice with an identical BAC carrying mutations in CArG elements that inhibit human CNN1 expression showed outward remodeling and neointimal formation. CONCLUSIONS: A single intronic CArG element is necessary but insufficient for proper CNN1 expression in vivo. CNN1 overexpression antagonizes arterial injury-induced neointimal formation.


Subject(s)
Calcium-Binding Proteins/genetics , Carotid Artery Injuries/metabolism , Cell Proliferation , Microfilament Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Promoter Regions, Genetic , Tunica Intima/metabolism , Animals , Binding Sites , Blotting, Western , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Cell Line , Chromosomes, Artificial, Bacterial , Disease Models, Animal , Gene Expression Regulation , Genes, Reporter , Humans , Immunohistochemistry , Introns , Lac Operon , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microfilament Proteins/deficiency , Microfilament Proteins/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Rats , Serum Response Element , Serum Response Factor/metabolism , Transfection , Tunica Intima/pathology , Calponins
8.
Vascul Pharmacol ; 145: 107002, 2022 08.
Article in English | MEDLINE | ID: mdl-35623546

ABSTRACT

RATIONALE: Epidemiological studies suggest that individuals in the Mediterranean region with deficiency of glucose-6-phosphate dehydrogenase (G6PD) are less susceptible to cardiovascular diseases. However, our knowledge regarding the effects of G6PD deficiency on pathogenesis of vascular diseases caused by factors, like angiotensin II (Ang-II), which stimulate synthesis of inflammatory cytokines and vascular inflammation, is lacking. Furthermore, to-date the effect of G6PD deficiency on vascular health has been controversial and difficult to experimentally prove due to a lack of good animal model. OBJECTIVE: To determine the effect of Ang-II-induced hypertension (HTN) and stiffness in a rat model of the Mediterranean G6PD (G6PDS188F) variant and in wild-type (WT) rats. METHODS AND RESULTS: Our findings revealed that infusion of Ang-II (490 ng/kg/min) elicited less HTN and medial hypertrophy of carotid artery in G6PDS188F than in WT rats. Additionally, Ang-II induced less glomerular and tubular damage in the kidneys - a consequence of elevated pressure - in G6PDS188F than WT rats. However, Ang-II-induced arterial stiffness increased in G6PDS188F and WT rats, and there were no differences between the groups. Mechanistically, we found aorta of G6PDS188F as compared to WT rats produced less sustained contraction and less inositol-1,2,3-phosphate (IP3) and superoxide in response to Ang-II. Furthermore, aorta of G6PDS188F as compared to WT rats expressed lower levels of phosphorylated extracellular-signal regulated kinase (ERK). Interestingly, the aorta of G6PDS188F as compared to WT rats infused with Ang-II transcribed more (50-fold) myosin heavy chain-11 (MYH11) gene, which encodes contractile protein of smooth muscle cell (SMC), and less (2.3-fold) actin-binding Rho-activating gene, which encodes a protein that enhances SMC proliferation. A corresponding increase in MYH11 and Leiomodin-1 (LMOD1) staining was observed in arteries of Ang-II treated G6PDS188F rats. However, G6PD deficiency did not affect the accumulation of CD45+ cells and transcription of genes encoding interleukin-6 and collagen-1a1 by Ang-II. CONCLUSIONS: The G6PDS188F loss-of-function variant found in humans protected rats from Ang-II-induced HTN and kidney damage, but not from vascular inflammation and arterial stiffness.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Hypertension , Vascular Stiffness , Actins , Angiotensin II/metabolism , Animals , Glucosephosphate Dehydrogenase Deficiency/complications , Humans , Hypertension/chemically induced , Hypertension/genetics , Inflammation/complications , Inositol , Interleukin-6/genetics , Kidney , Myosin Heavy Chains , Phosphates , Rats , Superoxides/metabolism
9.
Nat Cardiovasc Res ; 1(11): 1084-1100, 2022 11.
Article in English | MEDLINE | ID: mdl-36424917

ABSTRACT

All current smooth muscle cell (SMC) Cre mice similarly recombine floxed alleles in vascular and visceral SMCs. Here, we present an Itga8-CreER T2 knock-in mouse and compare its activity with a Myh11-CreER T2 mouse. Both Cre drivers demonstrate equivalent recombination in vascular SMCs. However, Myh11-CreER T2 mice, but not Itga8-CreER T2 mice, display high activity in visceral SMC-containing tissues such as intestine, show early tamoxifen-independent activity, and produce high levels of CreERT2 protein. Whereas Myh11-CreER T2 -mediated knockout of serum response factor (Srf) causes a lethal intestinal phenotype precluding analysis of the vasculature, loss of Srf with Itga8-CreER T2 (Srf Itga8 ) yields viable mice with no evidence of intestinal pathology. Male and female Srf Itga8 mice exhibit vascular contractile incompetence, and angiotensin II causes elevated blood pressure in wild type, but not Srf Itga8 , male mice. These findings establish the Itga8-CreER T2 mouse as an alternative to existing SMC Cre mice for unfettered phenotyping of vascular SMCs following selective gene loss.

10.
Redox Biol ; 41: 101903, 2021 05.
Article in English | MEDLINE | ID: mdl-33667992

ABSTRACT

Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy. Myocardin related transcription factor A (MRTFA, MKL1) is a multifaceted transcription factor, regulating diverse biological processes. However, a detailed understanding of the mechanistic role of MKL1 in AAA has yet to be elucidated. In this study, we showed induced MKL1 expression in thoracic and abdominal aneurysmal tissues, respectively in both mice and humans. MKL1 global knockout mice displayed reduced AAA formation and aortic rupture compared with wild-type mice. Both gene deletion and pharmacological inhibition of MKL1 markedly protected mice from aortic dissection, an early event in Angiotensin II (Ang II)-induced AAA formation. Loss of MKL1 was accompanied by reduced senescence/proinflammation in the vessel wall and cultured vascular smooth muscle cells (VSMCs). Mechanistically, a deficiency in MKL1 abolished AAA-induced p38 mitogen activated protein kinase (p38MAPK) activity. Similar to MKL1, loss of MAPK14 (p38α), the dominant isoform of p38MAPK family in VSMCs suppressed Ang II-induced AAA formation, vascular inflammation, and senescence marker expression. These results reveal a molecular pathway of AAA formation involving MKL1/p38MAPK stimulation and a VSMC senescent/proinflammatory phenotype. These data support targeting MKL1/p38MAPK pathway as a potential effective treatment for AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Angiotensin II , Animals , Disease Models, Animal , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Trans-Activators , p38 Mitogen-Activated Protein Kinases
11.
Genome Biol ; 22(1): 83, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33722289

ABSTRACT

BACKGROUND: Most single nucleotide variants (SNVs) occur in noncoding sequence where millions of transcription factor binding sites (TFBS) reside. Here, a comparative analysis of CRISPR-mediated homology-directed repair (HDR) versus the recently reported prime editing 2 (PE2) system was carried out in mice over a TFBS called a CArG box in the Tspan2 promoter. RESULTS: Quantitative RT-PCR showed loss of Tspan2 mRNA in aorta and bladder, but not heart or brain, of mice homozygous for an HDR-mediated three base pair substitution in the Tspan2 CArG box. Using the same protospacer, mice homozygous for a PE2-mediated single-base substitution in the Tspan2 CArG box displayed similar cell-specific loss of Tspan2 mRNA; expression of an overlapping long noncoding RNA was also nearly abolished in aorta and bladder. Immuno-RNA fluorescence in situ hybridization validated loss of Tspan2 in vascular smooth muscle cells of HDR and PE2 CArG box mutant mice. Targeted sequencing demonstrated variable frequencies of on-target editing in all PE2 and HDR founders. However, whereas no on-target indels were detected in any of the PE2 founders, all HDR founders showed varying levels of on-target indels. Off-target analysis by targeted sequencing revealed mutations in many HDR founders, but none in PE2 founders. CONCLUSIONS: PE2 directs high-fidelity editing of a single base in a TFBS leading to cell-specific loss in expression of an mRNA/long noncoding RNA gene pair. The PE2 platform expands the genome editing toolbox for modeling and correcting relevant noncoding SNVs in the mouse.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation , Point Mutation , Animals , Base Sequence , Binding Sites , Fluorescent Antibody Technique/methods , Gene Editing/methods , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Organ Specificity/genetics , Promoter Regions, Genetic , Protein Binding , Recombinational DNA Repair , Tetraspanins/genetics
12.
J Biol Chem ; 284(48): 33671-82, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19801679

ABSTRACT

Large conductance calcium-activated potassium (MaxiK) channels play a pivotal role in maintaining normal arterial tone by regulating the excitation-contraction coupling process. MaxiK channels comprise alpha and beta subunits encoded by Kcnma and the cell-restricted Kcnmb genes, respectively. Although the functionality of MaxiK channel subunits has been well studied, the molecular regulation of their transcription and modulation in smooth muscle cells (SMCs) is incomplete. Using several model systems, we demonstrate down-regulation of Kcnmb1 mRNA upon SMC phenotypic modulation in vitro and in vivo. As part of a broad effort to define all functional CArG elements in the genome (i.e. the CArGome), we discovered two conserved CArG boxes located in the proximal promoter and first intron of the human KCNMB1 gene. Gel shift and chromatin immunoprecipitation assays confirmed serum response factor (SRF) binding to both CArG elements. A luciferase assay showed myocardin (MYOCD)-mediated transactivation of the KCNMB1 promoter in a CArG element-dependent manner. In vivo analysis of the human KCNMB1 promoter disclosed activity in embryonic heart and aortic SMCs; mutation of both conserved CArG elements completely abolished in vivo promoter activity. Forced expression of MYOCD increased Kcnmb1 expression in a variety of rodent and human non-SMC lines with no effect on expression of the Kcnma1 subunit. Conversely, knockdown of Srf resulted in decreases of endogenous Kcnmb1. Functional studies demonstrated MYOCD-induced, iberiotoxin-sensitive potassium currents in porcine coronary SMCs. These results reveal the first ion channel subunit as a direct target of SRF-MYOCD transactivation, providing further insight into the role of MYOCD as a master regulator of the SMC contractile phenotype.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/metabolism , Serum Response Factor/metabolism , Trans-Activators/metabolism , Animals , Blotting, Western , COS Cells , Cell Line , Cells, Cultured , Chlorocebus aethiops , Female , Gene Expression Regulation , HeLa Cells , Humans , In Situ Hybridization , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Protein Binding , Response Elements/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
13.
Aging (Albany NY) ; 12(15): 15603-15623, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32805724

ABSTRACT

Vascular aging has been documented as a vital process leading to arterial dysfunction and age-related cardiovascular and cerebrovascular diseases. However, our understanding of the molecular underpinnings of age-related phenotypes in the vascular system is incomplete. Here we performed bulk RNA sequencing in young and old mouse aortae to elucidate age-associated changes in the transcriptome. Results showed that the majority of upregulated pathways in aged aortae relate to immune response, including inflammation activation, apoptotic clearance, and phagocytosis. The top downregulated pathway in aged aortae was extracellular matrix organization. Additionally, protein folding control and stress response pathways were downregulated in the aged vessels, with an array of downregulated genes encoding heat shock proteins (HSPs). We also found that circadian core clock genes were differentially expressed in young versus old aortae. Finally, transcriptome analysis combined with protein expression examination and smooth muscle cell (SMC) lineage tracing revealed that SMCs in aged aortae retained the differentiated phenotype, with an insignificant decrease in SMC marker gene expression. Our results therefore unveiled critical pathways regulated by arterial aging in mice, which will provide important insight into strategies to defy vascular aging and age-associated vascular diseases.


Subject(s)
Aging/genetics , Aorta/metabolism , Gene Expression Profiling , Transcriptome , Vascular Remodeling/genetics , Age Factors , Aging/immunology , Aging/metabolism , Aging/pathology , Animals , Aorta/immunology , Aorta/pathology , Aorta/physiopathology , Circadian Rhythm/genetics , Gene Expression Regulation , Gene Regulatory Networks , Male , Mice, Inbred C57BL , Mice, Transgenic , Protein Interaction Maps , RNA-Seq , Signal Transduction
14.
PLoS One ; 12(2): e0171262, 2017.
Article in English | MEDLINE | ID: mdl-28152551

ABSTRACT

Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown. We describe here how SRF plays a functional role in the regulation of the SMC contractility via myotonic dystrophy protein kinase (DMPK) and L-type calcium channel CACNA1C. GI SMC expressed Dmpk and Cacna1c genes into multiple alternative transcriptional isoforms. Deficiency of SRF in SMC of Srf knockout (KO) mice led to reduction of SRF-dependent DMPK, which down-regulated the expression of CACNA1C. Reduction of CACNA1C in KO SMC not only decreased intracellular Ca2+ spikes but also disrupted their coupling between cells resulting in decreased contractility. The role of SRF in the regulation of SMC phenotype and function provides new insight into how SMC lose their contractility leading to hypomotility in pathophysiological conditions within the GI tract.


Subject(s)
Calcium Channels, L-Type/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Myotonin-Protein Kinase/physiology , Serum Response Factor/physiology , Animals , Blotting, Western , Female , Male , Mice , Mice, Knockout , Microscopy, Confocal , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/ultrastructure , Polymerase Chain Reaction , Proteomics , Tamoxifen/pharmacology
15.
Lab Anim (NY) ; 41(4): 102-7, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22430476

ABSTRACT

For genotyping of transgenic animals, many IACUC guidelines recommend the use of fecal DNA when possible because this approach is non-invasive. Existing methods for extracting fecal DNA may be costly or involve the use of toxic organic solvents. Furthermore, feces contain an abundance of PCR inhibitors that may hinder DNA amplification when they are co-purified with fecal DNA. Here the authors describe a cost-effective, non-toxic method for genotyping transgenic animals by using the reagent AquaStool to extract fecal DNA and remove PCR inhibitors. Genotyping results obtained from fecal DNA samples extracted using AquaStool were reliably accurate when compared with results obtained from tail DNA samples. Because it is non-invasive, the authors believe that use of this method for genotyping transgenic animals using fecal DNA samples may improve animal welfare.


Subject(s)
Animal Care Committees , Animal Welfare , Animals, Genetically Modified/genetics , Chemical Fractionation/methods , DNA/genetics , Feces/chemistry , Animals , DNA/analysis , Genotype , Sensitivity and Specificity
16.
PLoS One ; 6(4): e18538, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21483686

ABSTRACT

Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE) located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12ß) in cultured smooth muscle cells (SMC) as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12ß is a retinoid-induced, immediate-early gene. Akap12ß promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA) regulatory subunit overlay assays in SMC suggest a physical association between AKAP12ß and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12ß attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.


Subject(s)
A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Expression Regulation/drug effects , Genes, Tumor Suppressor , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Retinoids/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Male , Mice , Muscle, Smooth, Vascular/drug effects , Promoter Regions, Genetic/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Response Elements/genetics , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL