Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Paleoceanogr Paleoclimatol ; 35(10): e2020PA003932, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33134852

ABSTRACT

Several studies indicate that North Atlantic Deep Water (NADW) formation might have initiated during the globally warm Eocene (56-34 Ma). However, constraints on Eocene surface ocean conditions in source regions presently conducive to deep water formation are sparse. Here we test whether ocean conditions of the middle Eocene Labrador Sea might have allowed for deep water formation by applying (organic) geochemical and palynological techniques, on sediments from Ocean Drilling Program (ODP) Site 647. We reconstruct a long-term sea surface temperature (SST) drop from ~30°C to ~27°C between 41.5 to 38.5 Ma, based on TEX86. Superimposed on this trend, we record ~2°C warming in SST associated with the Middle Eocene Climatic Optimum (MECO; ~40 Ma), which is the northernmost MECO record as yet, and another, likely regional, warming phase at ~41.1 Ma, associated with low-latitude planktic foraminifera and dinoflagellate cyst incursions. Dinoflagellate cyst assemblages together with planktonic foraminiferal stable oxygen isotope ratios overall indicate low surface water salinities and strong stratification. Benthic foraminifer stable carbon and oxygen isotope ratios differ from global deep ocean values by 1-2‰ and 2-4‰, respectively, indicating geographic basin isolation. Our multiproxy reconstructions depict a consistent picture of relatively warm and fresh but also highly variable surface ocean conditions in the middle Eocene Labrador Sea. These conditions were unlikely conducive to deep water formation. This implies either NADW did not yet form during the middle Eocene or it formed in a different source region and subsequently bypassed the southern Labrador Sea.

2.
Science ; 367(6475): 266-272, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31949074

ABSTRACT

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.


Subject(s)
Carbon Cycle , Extinction, Biological , Volcanic Eruptions , Carbon Dioxide/analysis , Global Warming , Mexico , Models, Theoretical
3.
Sci Rep ; 9(1): 4458, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872690

ABSTRACT

During the late Eocene, the Earth's climate experienced several transient temperature fluctuations including the Vonhof cooling event (C16n.1n; ~35.8 Ma) hitherto known mainly from the southern oceans. Here we reconstruct sea-surface temperatures (SST) and provide δ18O and δ13C foraminiferal records for the late Eocene and earliest Oligocene in the North Sea Basin. Our data reveal two main perturbations: (1), an abrupt brief cooling of ~4.5 °C dated to ~35.8 Ma and synchronous with the Vonhof cooling, which thus may be a global event, and (2) a gradual nearly 10 °C temperature fall starting at 36.1 Ma and culminating near the Eocene-Oligocene transition at ~33.9 Ma. The late Priabonian temperature trend in the North Sea shows some resemblance IODP Site U1404 from the North Atlantic, offshore Newfoundland; and is in contrast to the more abrupt change observed in the deep-sea δ18O records from the southern oceans. The cooling in the North Sea is large compared to the pattern seen in the North Atlantic record. This difference may be influenced by a late Eocene closure of the warm gateways connecting the North Sea with the Atlantic and Tethys oceans.

SELECTION OF CITATIONS
SEARCH DETAIL