Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Affiliation country
Publication year range
1.
Res Sports Med ; : 1-10, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35708219

ABSTRACT

Athletes in contact sports are exposed to repetitive impacts as an inherent part of sport. There is concern over the accumulative effect; however, much is still unknown regarding their short-term effects. This study investigated impact accumulation and outcomes over three seasons (2015, 2017, 2019) in NCAA Football Bowl Subdivision players. Impacts were recorded using helmet accelerometers, and virtual reality testing (VR) was done across the season. Incidence rates for impacts (total; ≥25 G to <80 G; ≥80 G) all significantly differed by season (p < 0.05). VR scores changed across the seasons, specifically significant decreases in spatial memory (p < 0.05) in 2015, significant changes in balance and spatial memory (p < 0.05) in 2017, and no significant changes in 2019. Linear regressions predicting VR change score by impact incidence rate were nonsignificant. Monitoring exposure to impacts and changes in outcomes is useful; however, results are fluid, and many factors could indirectly have protective effects on athletes.

2.
Exp Brain Res ; 235(1): 109-120, 2017 01.
Article in English | MEDLINE | ID: mdl-27644409

ABSTRACT

The experiment was setup to investigate the control of human quiet standing through the manipulation of augmented visual information feedback of selective properties of the motion of two primary variables in postural control: center of pressure (COP) and center of mass (COM). Five properties of feedback information were contrasted to a no feedback dual-task (watching a movie) control condition to determine the impact of visual real-time feedback on the coordination of the joint motions in postural control in both static and dynamic one-leg standing postures. The feedback information included 2D COP or COM position and macro variables derived from the COP and COM motions, namely virtual time-to-contact (VTC) and the COP-COM coupling. The findings in the static condition showed that the VTC and COP-COM coupling feedback conditions decreased postural motion more than the 2D COP or COM positional information. These variables also induced larger sway amplitudes in the dynamic condition showing a more progressive search strategy in exploring the stability limits. Canonical correlation analysis (CCA) found that COP-COM coupling contributed less than the other feedback variables to the redundancy of the system reflected in the common variance between joint motions and properties of sway motion. The COP-COM coupling had the lowest weighting of the motion properties to redundancy under the feedback conditions but overall the qualitative pattern of the joint motion structures was preserved within the respective static and dynamic balance conditions.


Subject(s)
Feedback, Sensory/physiology , Motion , Postural Balance/physiology , Posture/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male , Statistics as Topic , Young Adult
3.
Clin J Sport Med ; 26(2): 162-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26505696

ABSTRACT

OBJECTIVE: Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. DESIGN: Retrospective case-control study. SETTING: Institutional research laboratory. PARTICIPANTS: Normal controls (n = 94) and concussed participants (n = 27). INTERVENTIONS: All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. MAIN OUTCOME MEASURES: Final balance score. RESULTS: For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. CONCLUSIONS: The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. CLINICAL RELEVANCE: The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.


Subject(s)
Brain Concussion/diagnosis , Postural Balance , User-Computer Interface , Adolescent , Case-Control Studies , Humans , Sensitivity and Specificity , Young Adult
4.
Clin J Sport Med ; 25(2): 144-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24905539

ABSTRACT

OBJECTIVE: To determine the criterion and content validity of a virtual reality (VR) balance module for use in clinical practice. DESIGN: Retrospective, VR balance module completed by participants during concussion baseline or assessment testing session. SETTING: A Pennsylvania State University research laboratory. PARTICIPANTS: A total of 60 control and 28 concussed students and athletes from the Pennsylvania State University. INTERVENTIONS: None. MAIN OUTCOME MEASURES: This study examined: (1) the relationship between VR composite balance scores (final, stationary, yaw, pitch, and roll) and area of the center-of-pressure (eyes open and closed) scores and (2) group differences (normal volunteers and concussed student-athletes) on VR composite balance scores. RESULTS: With the exception of the stationary composite score, all other VR balance composite scores were significantly correlated with the center of pressure data obtained from a force platform. Significant correlations ranged from r = -0.273 to -0.704 for the eyes open conditions and from r = -0.353 to -0.876 for the eyes closed condition. When examining group differences on the VR balance composite modules, the concussed group did significantly (P < 0.01) worse on all measures compared with the control group. CONCLUSIONS: The VR balance module met or exceeded the criterion and content validity standard set by the current balance tools and may be appropriate for use in a clinical concussion setting. CLINICAL RELEVANCE: Virtual reality balance module is a valid tool for concussion assessment in clinical settings. This novel type of balance assessment may be more sensitive to concussion diagnoses, especially later (7-10 days) in the recovery phase than current clinical balance tools.


Subject(s)
Athletic Injuries/diagnosis , Brain Concussion/diagnosis , Postural Balance/physiology , Sensation Disorders/diagnosis , User-Computer Interface , Athletic Injuries/complications , Athletic Injuries/therapy , Brain Concussion/complications , Brain Concussion/therapy , Case-Control Studies , Humans , Retrospective Studies , Sensation Disorders/etiology
5.
Front Neurol ; 14: 1272374, 2023.
Article in English | MEDLINE | ID: mdl-37965166

ABSTRACT

Introduction: Neurovascular decoupling is a common consequence after brain injuries like sports-related concussion. Failure to appropriately match cerebral blood flow (CBF) with increases in metabolic demands of the brain can lead to alterations in neurological function and symptom presentation. Therapeutic hypothermia has been used in medicine for neuroprotection and has been shown to improve outcome. This study aimed to examine the real time effect of selective head cooling on healthy controls and concussed athletes via magnetic resonance spectroscopy (MRS) and arterial spin labeling (ASL) measures. Methods: 24 participants (12 controls; 12 concussed) underwent study procedures including the Post-Concussion Symptom Severity (PCSS) Rating Form and an MRI cooling protocol (pre-cooling (T1 MPRAGE, ASL, single volume spectroscopy (SVS)); during cooling (ASL, SVS)). Results: Results showed general decreases in brain temperature as a function of time for both groups. Repeated measures ANOVA showed a significant main effect of time (F = 7.94, p < 0.001) and group (F = 22.21, p < 0.001) on temperature, but no significant interaction of group and time (F = 1.36, p = 0.237). CBF assessed via ASL was non-significantly lower in concussed individuals at pre-cooling and generalized linear mixed model analyses demonstrated a significant main effect of time for the occipital left ROI (F = 11.29, p = 0.002) and occipital right ROI (F = 13.39, p = 0.001). There was no relationship between any MRI metric and PCSS symptom burden. Discussion: These findings suggest the feasibility of MRS thermometry to monitor alterations of brain temperature in concussed athletes and that metabolic responses in response to cooling after concussion may differ from controls.

6.
J Neurotrauma ; 39(19-20): 1339-1348, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35615873

ABSTRACT

This prospective cohort study examined the relationship between a panel of four serum proteomic biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1], total Tau, and neurofilament light chain polypeptide [NF-L]) in 52 players from two different cohorts of male collegiate student football athletes from two different competitive seasons of Division I National Collegiate Athletic Association Football Bowl Subdivision. This study evaluated changes in biomarker concentrations (as indicators of brain injury) over the course of the playing season (pre- and post-season) and also assessed biomarker concentrations by player position using two different published classification systems. Player positions were divided into: 1) speed (quarterbacks, running backs, halfbacks, fullbacks, wide receivers, tight ends, defensive backs, safety, and linebackers) versus non-speed (offensive and defensive linemen), and 2) "Profile 1" (low frequency/high strain magnitudes positions including quarterbacks, wide receivers, and defensive backs), "Profile 2" (mid-range impact frequency and strain positions including linebackers, running backs, and tight ends), and "Profile 3" (high frequency/low strains positions including defensive and offensive linemen). There were significant increases in GFAP 39.3 to 45.6 pg/mL and NF-L 3.5 to 5.4 pg/mL over the course of the season (p < 0.001) despite only five players being diagnosed with concussion. UCH-L1 decreased significantly, and Tau was not significantly different. In both the pre- and post-season blood samples Tau and NF-L concentrations were significantly higher in speed versus non-speed positions. Concentrations of GFAP, Tau, and NF-L increased incrementally from "Profile 3," to "Profile 2" to "Profile 1" in the post-season. UCH-L1 did not. GFAP increased (by Profiles 3, 2, 1) from 42.4 to 49.6 to 78.2, respectively (p = 0.051). Tau increased from 0.37 to 0.61 to 0.67, respectively (p = 0.024). NF-L increased from 3.5 to 4.9 to 8.2, respectively (p < 0.001). Although GFAP and Tau showed similar patterns of elevations by profile in the pre-season samples they were not statistically significant. Only NF-L showed significant differences between profiles 2.7 to 3.1 to 4.2 in the pre-season (p = 0.042). GFAP, Tau, and NF-L concentrations were significantly associated with different playing positions with the highest concentrations in speed and "Profile 1" positions and the lowest concentrations were in non-speed and "Profile 3" positions. Blood-based biomarkers (GFAP, Tau, NF-L) provide an additional layer of injury quantification that could contribute to a better understanding of the risks of playing different positions.


Subject(s)
Football , Biomarkers , Football/injuries , Glial Fibrillary Acidic Protein , Humans , Male , Prospective Studies , Proteomics , Seasons , Ubiquitin Thiolesterase
7.
Brain Imaging Behav ; 16(1): 503-517, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34308510

ABSTRACT

Examine the effect of subconcussive impact accumulation on cognitive/functional, imaging, and biomarker outcomes over the course of a single season, specifically in contact sport athletes at collegiate level or younger. Systematic review following PRISMA guidelines and using Oxford Center for Evidence-Based Medicine 2011 Levels of Evidence and Newcastle Ottawa Assessment Scale. PubMed MEDLINE, PsycInfo, SPORT-Discus, Web of Science. Original research in English that addressed the influence of subconcussive impacts on outcomes of interest with minimum preseason and postseason measurement in current youth, high school, or college-aged contact sport athletes. 796 articles were initially identified, and 48 articles were included in this review. The studies mostly involved male football athletes in high school or college and demonstrated an underrepresentation of female and youth studies. Additionally, operationalization of previous concussion history and concussion among studies was very inconsistent. Major methodological differences existed across studies, with ImPACT and diffusion tensor imaging being the most commonly used modalities. Biomarker studies generally showed negative effects, cognitive/functional studies mostly revealed no effects, and advanced imaging studies showed generally negative findings over the season; however, there was variability in the findings across all types of studies. This systematic review revealed growing literature on this topic, but inconsistent methodology and operationalization across studies makes it challenging to draw concrete conclusions. Overall, cognitive measures alone do not seem to detect changes across this timeframe while imaging and biomarker measures may be more sensitive to changes following subconcussive impacts.


Subject(s)
Athletic Injuries , Brain Concussion , Adolescent , Athletes , Athletic Injuries/diagnostic imaging , Biomarkers , Brain Concussion/diagnostic imaging , Child , Cognition , Diffusion Tensor Imaging , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
8.
iScience ; 25(1): 103483, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35106455

ABSTRACT

Research suggests contact sports affect neurological health. This study used permutation-based mediation statistics to integrate measures of metabolomics, neuroinflammatory miRNAs, and virtual reality (VR)-based motor control to investigate multi-scale relationships across a season of collegiate American football. Fourteen significant mediations (six pre-season, eight across-season) were observed where metabolites always mediated the statistical relationship between miRNAs and VR-based motor control ( p S o b e l p e r m ≤ 0.05; total effect > 50%), suggesting a hypothesis that metabolites sit in the statistical pathway between transcriptome and behavior. Three results further supported a model of chronic neuroinflammation, consistent with mitochondrial dysfunction: (1) Mediating metabolites were consistently medium-to-long chain fatty acids, (2) tricarboxylic acid cycle metabolites decreased across-season, and (3) accumulated head acceleration events statistically moderated pre-season metabolite levels to directionally model post-season metabolite levels. These preliminary findings implicate potential mitochondrial dysfunction and highlight probable peripheral blood biomarkers underlying repetitive head impacts in otherwise healthy collegiate football athletes.

9.
Arch Clin Neuropsychol ; 36(5): 746-756, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-33140096

ABSTRACT

OBJECTIVE: The present study explored the relationship between specific types of postconcussion symptoms and cognitive outcomes in student-athletes with chronic concussion symptoms. METHOD: Forty student-athletes with chronic concussion symptoms were given a battery of neuropsychological tests and rated themselves on a variety of postconcussion symptoms, which included the following factors derived from prior work: Physical, Sleep, Cognitive, Affective, and Headache. Cognitive outcomes included performance on composites for the memory and attention/executive functioning speed tests, respectively. The following covariates were also explored: Sex, depression symptoms, number of previous concussions, and time since injury. RESULTS: Headache was the only individual symptom factor that significantly (p < .05) predicted worse attention/executive functioning performance. None of the symptom factors were significantly related to memory performance over and above the variable of time since injury, such that longer time since injury was related to worse memory performance. CONCLUSION: Comparable to work examining symptom predictors of cognitive outcomes in acutely concussed samples, headache predicted worse attention/executive functioning performance. Additionally, we found that the longer athletes had been symptomatic since injury, the "worse" their memory functioning. Understanding how headache and the length of time an individual is symptomatic are related to cognitive outcomes can help inform treatment and recommendations for athletes with prolonged symptom recovery.


Subject(s)
Athletic Injuries , Brain Concussion , Post-Concussion Syndrome , Athletes , Athletic Injuries/complications , Brain Concussion/complications , Humans , Neuropsychological Tests , Post-Concussion Syndrome/diagnosis , Students
10.
Neurotrauma Rep ; 2(1): 84-93, 2021.
Article in English | MEDLINE | ID: mdl-34223548

ABSTRACT

The involvement of the central nervous system (CNS), specifically the white matter tracts in the cervical spinal cord, was examined with diffusion tensor imaging (DTI) following exposure to repetitive head acceleration events (HAEs) after a single season of collegiate football. Fifteen National Collegiate Athletic Association (NCAA) Division 1 football players underwent DTI of the cervical spinal cord (vertebral level C1-4) at pre-season (before any contact practices began) and post-season (within 1 week of the last regular season game) intervals. Helmet accelerometer data were also collected in parallel throughout the season. From pre-season to post-season, a significant decrease (p < 0.05) of axial diffusivity was seen within the right spino-olivary tract. In addition, a significant decrease (p < 0.05) in global white matter fractional anisotropy (FA) along with increases (p < 0.05) in global white matter mean diffusivity (MD) and radial diffusivity (RD) were found. These changes in FA from pre-season to post-season were significantly moderated by previous concussion history (p < 0.05) and number of HAEs over 80 g (p < 0.05). Despite the absence of sports-related concussion (SRC), we present measurable changes in the white matter integrity of the cervical spinal cord suggesting injury from repetitive HAEs, or SRC, may include the entirety of the CNS, not just the brain.

11.
Neurotrauma Rep ; 2(1): 476-487, 2021.
Article in English | MEDLINE | ID: mdl-34901943

ABSTRACT

This prospective, controlled, observational cohort study assessed the performance of a novel panel of serum microRNA (miRNA) biomarkers relative to findings on cervical spinal cord magnetic resonance imaging (MRI) in collegiate football players. There were 44 participants included in the study: 30 non-athlete control subjects and 14 male collegiate football athletes participating in a Division I Football Bowl Subdivision of the National Collegiate Athletic Association. Diffuse tensor MRI and blood samples were acquired within the week before the athletic season began and within the week after the last game of the season. All miRNAs were significantly higher in athletes regardless of their fractional anisotropy (FA) values (p < 0.001), even those considered to be in the "normal" range of FA for white and gray matter integrity in the cervical spinal cord. miRNA biomarkers were most significantly correlated with FA of the white matter (WM) tracts of the dorsal (posterior) spinal cord; particularly, the fasciculus gracilis, fasciculus cuneatus, lateral corticospinal tract, rubrospinal tract, lateral reticulospinal tract, spinal lemniscus, and spinothalamic and -reticular tracts. Areas under the curve for miRNA biomarkers predicting lower FA of WM dorsal (posterior) cervical spinal tracts, therefore lower white matter integrity (connectivity), were miR-505* = 0.75 (0.54-0.96), miR-30d = 0.74 (0.52-0.95), and miR-92a = 0.75 (0.53-0.98). Should these findings be replicated in a larger cohort of athletes, these markers could potentially serve as measures of neuroimaging abnormalities in athletes at risk for concussion and subconcussive injuries to the cervical spinal cord.

12.
J Neurotrauma ; 38(10): 1368-1376, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33413020

ABSTRACT

Neuroimaging demonstrates that athletes of collision sports can suffer significant changes to their brain in the absence of concussion, attributable to head acceleration event (HAE) exposure. In a sample of 24 male Division I collegiate football players, we examine the relationships between tryptophan hydroxylase 2 (TPH2), a gene involved in neurovascular function, regional cerebral blood flow (rCBF) measured by arterial spin labeling, and virtual reality (VR) motor performance, both pre-season and across a single football season. For the pre-season, TPH2 T-carriers showed lower rCBF in two left hemisphere foci (fusiform gyrus/thalamus/hippocampus and cerebellum) in association with higher (better performance) VR Reaction Time, a dynamic measure of sensory-motor reactivity and efficiency of visual-spatial processing. For TPH2 CC homozygotes, higher pre-season rCBF in these foci was associated with better performance on VR Reaction Time. A similar relationship was observed across the season, where TPH2 T-carriers showed improved VR Reaction Time associated with decreases in rCBF in the right hippocampus/amygdala, left middle temporal lobe, and left insula/putamen/pallidum. In contrast, TPH2 CC homozygotes showed improved VR Reaction Time associated with increases in rCBF in the same three clusters. These findings show that TPH2 T-carriers have an abnormal relationship between rCBF and the efficiency of visual-spatial processing that is exacerbated after a season of high-impact sports in the absence of diagnosable concussion. Such gene-environment interactions associated with behavioral changes after exposure to repetitive HAEs have been unrecognized with current clinical analytical tools and warrant further investigation. Our results demonstrate the importance of considering neurovascular factors along with traumatic axonal injury to study long-term effects of repetitive HAEs.


Subject(s)
Brain Injuries/genetics , Brain/blood supply , Brain/physiopathology , Football/injuries , Tryptophan Hydroxylase/genetics , Acceleration , Athletic Injuries/complications , Athletic Injuries/genetics , Athletic Injuries/physiopathology , Cerebrovascular Circulation/physiology , Genotype , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Reaction Time/genetics , Spatial Behavior/physiology , Virtual Reality , Young Adult
13.
Exp Brain Res ; 202(2): 341-54, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20039023

ABSTRACT

Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting.


Subject(s)
Athletes , Brain/physiopathology , Cognition/physiology , Memory/physiology , Post-Concussion Syndrome/physiopathology , Space Perception/physiology , Brain/blood supply , Brain Concussion/physiopathology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Maze Learning/physiology , Neural Pathways/blood supply , Neural Pathways/physiopathology , Neuropsychological Tests , Oxygen/blood , User-Computer Interface , Young Adult
14.
J Neurotrauma ; 36(7): 1115-1124, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30351182

ABSTRACT

This candidate gene study evaluated the relationship of a past history of concussion with single nucleotide polymorphisms (SNPs) in nine genes in a small cohort (N = 87) of a nationally ranked Division I football team. Genes and SNPs studied were selected based on their published connection to brain injury and brain development, as well as impulsivity. We used multinomial logistic regression analysis (MLRA) to quantify how well genotype predicted the number of previously diagnosed concussions (three categories: none, one, two or more), while covarying race and number of years participating in football. The rs4504469 SNP for KIAA0319 was the only locus that significantly predicted number of previously diagnosed concussions (p = 0.005, meeting Bonferroni correction for multiple comparisons). The KIAA0319 results raise the hypothesis that having the CT or TT genotype of KIAA0319 may be predictive of a lower incidence of previously diagnosed concussion. This finding raises a number of hypotheses for future pre-clinical research, particularly whether alterations in neural organization related to KIAA0319 rs4504469 lead to reduced susceptibility for lasting head trauma, or greater resilience in the face of repeated subconcussive injury.


Subject(s)
Athletic Injuries/genetics , Brain Concussion/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Alleles , Football , Genotype , Humans , Male , Pilot Projects
15.
J Neurotrauma ; 36(8): 1343-1351, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30343622

ABSTRACT

This prospective controlled observational cohort study assessed the performance of a novel panel of serum microRNA (miRNA) biomarkers on indicators of concussion, subconcussive impacts, and neurocognitive function in collegiate football players over the playing season. Male collegiate student football athletes participating in a Division I Football Bowl Subdivision of the National Collegiate Athletic Association (NCAA) were enrolled. There were a total of 53 participants included in the study, 30 non-athlete control subjects and 23 male collegiate student football athletes. Neurocognitive assessments and blood samples were taken within the week before the athletic season began and within the week after the last game of the season and measured for a panel of pre-selected miRNA biomarkers. All the athletes had elevated levels of circulating miRNAs at the beginning of the season compared with control subjects (p < 0.001). Athletes with the lowest standard assessment of concussion (SAC) scores at the beginning of the season had the highest levels of miRNAs. The area under the curve (AUC) for predicting pre-season SAC scores were miR-195 (0.90), miR-20a (0.89), miR-151-5p (0.86), miR-505* (0.85), miR-9-3p (0.77), and miR-362-3p (0.76). In athletes with declining neurocognitive function over the season, concentrations of miRNAs increased over same period. There were significant negative correlations with miR-505* (p = 0.011), miR-30d (p = 0.007), miR-92 (p = 0.033), and (p = 0.008). The miRNAs correlating with balance problems were miR-505* (p = 0.007), miR-30d (p = 0.028), and miR-151-5p (p = 0.023). Those correlating with poor reaction times were miR-20a (0.043), miR-505* (p = 0.049), miR-30d (p = 0.031), miR-92 (p = 0.015), and miR-151-5p (p = 0.044). Select miRNAs were associated with baseline concussion assessments at the beginning of the season and with neurocognitive changes from pre to post-season in collegiate football players. Should these findings be replicated in a larger cohort of athletes, these markers could potentially serve as measures of neurocognitive status in athletes at risk for concussion and subconcussive injuries.


Subject(s)
Biomarkers/blood , Brain Concussion/blood , Football/injuries , RNA, Messenger/blood , Athletes , Cohort Studies , Humans , Male , Prospective Studies , Recovery of Function/physiology , Young Adult
16.
Gait Posture ; 27(2): 303-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17524647

ABSTRACT

The purpose of this study was to investigate whether the moving room paradigm could be used to assess fall risk in older people. A group of young adults (18-29 years) and two groups of elderly adults (60-79 years) with and without a history of falls were placed into a simulated moving room. Participants stood still facing an oscillating three dimensional virtual room moving in the antero-posterior plane with three types of room movement conditions, continuous oscillatory, discrete anterior and discrete posterior. The young adults performed with less postural motion and coherence with the virtual motion than the older age groups. The group of elderly fallers exhibited more postural motion [center of pressure (COP) length, p<0.05], a trend towards higher coherence with the object motion (p=0.07), and the greatest amount of time-to-stability (p<0.05). A virtual moving room incorporating measures of time-to-stability and egomotion appears useful in predicting risk for falls.


Subject(s)
Accidental Falls , Aging/physiology , Motion , Postural Balance/physiology , Adolescent , Adult , Aged , Case-Control Studies , Geriatric Assessment , Humans , Middle Aged , Predictive Value of Tests , Pressure , Risk Factors , User-Computer Interface , Vision Tests
17.
Neuroimage Clin ; 14: 708-718, 2017.
Article in English | MEDLINE | ID: mdl-28393012

ABSTRACT

The cumulative effect of repetitive subconcussive collisions on the structural and functional integrity of the brain remains largely unknown. Athletes in collision sports, like football, experience a large number of impacts across a single season of play. The majority of these impacts, however, are generally overlooked, and their long-term consequences remain poorly understood. This study sought to examine the effects of repetitive collisions across a single competitive season in NCAA Football Bowl Subdivision athletes using advanced neuroimaging approaches. Players were evaluated before and after the season using multiple MRI sequences, including T1-weighted imaging, diffusion tensor imaging (DTI), arterial spin labeling (ASL), resting-state functional MRI (rs-fMRI), and susceptibility weighted imaging (SWI). While no significant differences were found between pre- and post-season for DTI metrics or cortical volumes, seed-based analysis of rs-fMRI revealed significant (p < 0.05) changes in functional connections to right isthmus of the cingulate cortex (ICC), left ICC, and left hippocampus. ASL data revealed significant (p < 0.05) increases in global cerebral blood flow (CBF), with a specific regional increase in right postcentral gyrus. SWI data revealed that 44% of the players exhibited outlier rates (p < 0.05) of regional decreases in SWI signal. Of key interest, athletes in whom changes in rs-fMRI, CBF and SWI were observed were more likely to have experienced high G impacts on a daily basis. These findings are indicative of potential pathophysiological changes in brain integrity arising from only a single season of participation in the NCAA Football Bowl Subdivision, even in the absence of clinical symptoms or a diagnosis of concussion. Whether these changes reflect compensatory adaptation to cumulative head impacts or more lasting alteration of brain integrity remains to be further explored.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/etiology , Brain Mapping , Brain/diagnostic imaging , Football/injuries , Neuroimaging , Accelerometry , Cerebrovascular Circulation/physiology , Humans , Image Processing, Computer-Assisted , Male , Nerve Fibers/pathology , Neural Pathways/diagnostic imaging , Seasons , Universities , Young Adult
18.
Gait Posture ; 47: 18-23, 2016 06.
Article in English | MEDLINE | ID: mdl-27264397

ABSTRACT

The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control.


Subject(s)
Adaptation, Physiological , Feedback , Postural Balance/physiology , Posture/physiology , Adult , Biomechanical Phenomena/physiology , Female , Humans , Male , Young Adult
19.
Int J Psychophysiol ; 95(3): 254-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25448267

ABSTRACT

There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings.


Subject(s)
Cerebral Cortex/physiology , Computer Simulation , Depth Perception/physiology , Mental Recall/physiology , Spatial Behavior/physiology , Theta Rhythm/physiology , Adolescent , Brain Mapping , Electroencephalography , Female , Humans , Male , Movement/physiology , Posture , Young Adult
20.
J Neurotrauma ; 32(10): 661-73, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25254425

ABSTRACT

The aim of this study was to systematically review clinical studies examining biofluid biomarkers of brain injury for concussion in athletes. Data sources included PubMed, MEDLINE, and the Cochrane Database from 1966 to October 2013. Studies were included if they recruited athletes participating in organized sports who experienced concussion or head injury during a sports-related activity and had brain injury biomarkers measured. Acceptable research designs included experimental, observational, and case-control studies. Review articles, opinion papers, and editorials were excluded. After title and abstract screening of potential articles, full texts were independently reviewed to identify articles that met inclusion criteria. A composite evidentiary table was then constructed and documented the study title, design, population, methods, sample size, outcome measures, and results. The search identified 52 publications, of which 13 were selected and critically reviewed. All of the included studies were prospective and were published either in or after the year 2000. Sports included boxing (six studies), soccer (five studies), running/jogging (two studies), hockey (one study), basketball (one study), cycling (one study), and swimming (one study). The majority of studies (92%) had fewer than 100 patients. Three studies (23%) evaluated biomarkers in cerebrospinal fluid (CSF), one in both serum and CSF, and 10 (77%) in serum exclusively. There were 11 different biomarkers assessed, including S100ß, glial fibrillary acidic protein, neuron-specific enolase, tau, neurofilament light protein, amyloid beta, brain-derived neurotrophic factor, creatine kinase and heart-type fatty acid binding protein, prolactin, cortisol, and albumin. A handful of biomarkers showed a correlation with number of hits to the head (soccer), acceleration/deceleration forces (jumps, collisions, and falls), postconcussive symptoms, trauma to the body versus the head, and dynamics of different sports. Although there are no validated biomarkers for concussion as yet, there is potential for biomarkers to provide diagnostic, prognostic, and monitoring information postinjury. They could also be combined with neuroimaging to assess injury evolution and recovery.


Subject(s)
Athletic Injuries/diagnosis , Biomarkers/cerebrospinal fluid , Brain Concussion/diagnosis , Athletic Injuries/blood , Athletic Injuries/cerebrospinal fluid , Biomarkers/blood , Brain Concussion/blood , Brain Concussion/cerebrospinal fluid , Humans
SELECTION OF CITATIONS
SEARCH DETAIL