Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Gen Virol ; 105(5)2024 05.
Article in English | MEDLINE | ID: mdl-38809251

ABSTRACT

Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from XƬnyĆ”ng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75Ć¢Ā€ĀŠ% in adult females and 15.19Ć¢Ā€ĀŠ% in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.


Subject(s)
Flavivirus , Ixodidae , Phylogeny , Animals , Flavivirus/genetics , Flavivirus/classification , Flavivirus/isolation & purification , China , Ixodidae/virology , Female
2.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38059479

ABSTRACT

Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39Ć¢Ā€ĀŠ% pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.


Subject(s)
Flaviviridae , Flavivirus , Animals , Flaviviridae/genetics , Rana temporaria/genetics , Phylogeny , RNA, Viral/genetics , RNA, Viral/chemistry , Flavivirus/genetics , Polyproteins/genetics , United Kingdom , Genome, Viral
3.
PLoS Pathog ; 17(1): e1009215, 2021 01.
Article in English | MEDLINE | ID: mdl-33439897

ABSTRACT

Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNƎĀ³, TNF and IL1Ɵ, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design.


Subject(s)
Genetic Vectors/administration & dosage , Immunity, Innate/immunology , Injection Site Reaction/immunology , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccinia/immunology , Zika Virus Infection/immunology , Animals , Female , Genetic Vectors/genetics , Genome, Viral , Mice , Mice, Inbred C57BL , RNA-Seq , Vaccines, Synthetic/immunology , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia virus/isolation & purification , Vaccinology , Zika Virus/isolation & purification , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology
4.
BMC Genomics ; 20(1): 474, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31182021

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are small membrane vesicles secreted by the cells that mediate intercellular transfer of molecules and contribute to transduction of various signals. Viral infection and action of pro-inflammatory cytokines has been shown to alter molecular composition of EV content. Transfer of antiviral proteins by EVs is thought to contribute to the development of inflammation and antiviral state. Altered incorporation of selected host RNAs into EVs in response to infection has also been demonstrated for several viruses, but not for WNV. Considering the medical significance of flaviviruses and the importance of deeper knowledge about the mechanisms of flavivirus-host interactions we assessed the ability of West Nile virus (WNV) and type I interferon (IFN), the main cytokine regulating antiviral response to WNV, to alter the composition of EV RNA cargo. RESULTS: We employed next generation sequencing to perform transcriptome-wide profiling of RNA cargo in EVs produced by cells infected with WNV or exposed to IFN-alpha. RNA profile of EVs secreted by uninfected cells was also determined and used as a reference. We found that WNV infection significantly changed the levels of certain host microRNAs (miRNAs), small noncoding RNAs (sncRNAs) and mRNAs incorporated into EVs. Treatment with IFN-alpha also altered miRNA and mRNA profiles in EV but had less profound effect on sncRNAs. Functional classification of RNAs differentially incorporated into EVs upon infection and in response to IFN-alpha treatment demonstrated association of enriched in EVs mRNAs and miRNAs with viral processes and pro-inflammatory pathways. Further analysis revealed that WNV infection and IFN-alpha treatment changed the levels of common and unique mRNAs and miRNAs in EVs and that IFN-dependent and IFN-independent processes are involved in regulation of RNA sorting into EVs during infection. CONCLUSIONS: WNV infection and IFN-alpha treatment alter the spectrum and the levels of mRNAs, miRNAs and sncRNAs in EVs. Differentially incorporated mRNAs and miRNAs in EVs produced in response to WNV infection and to IFN-alpha treatment are associated with viral processes and host response to infection. WNV infection affects composition of RNA cargo in EVs via IFN-dependent and IFN-independent mechanisms.


Subject(s)
Extracellular Vesicles/genetics , Interferon-alpha/pharmacology , MicroRNAs/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , West Nile virus/physiology , Animals , Cell Line , Extracellular Vesicles/drug effects , Gene Expression Profiling , Humans
5.
PLoS Pathog ; 13(12): e1006788, 2017 12.
Article in English | MEDLINE | ID: mdl-29281739

ABSTRACT

Chikungunya virus (CHIKV) belongs to a group of mosquito-borne alphaviruses associated with acute and chronic arthropathy, with peripheral and limb joints most commonly affected. Using a mouse model of CHIKV infection and arthritic disease, we show that CHIKV replication and the ensuing foot arthropathy were dramatically reduced when mice were housed at 30Ā°C, rather than the conventional 22Ā°C. The effect was not associated with a detectable fever, but was dependent on type I interferon responses. Bioinformatics analyses of RNA-Seq data after injection of poly(I:C)/jetPEI suggested the unfolded protein response and certain type I interferon responses are promoted when feet are slightly warmer. The ambient temperature thus appears able profoundly to effect anti-viral activity in the periphery, with clear consequences for alphaviral replication and the ensuing arthropathy. These observations may provide an explanation for why alphaviral arthropathies are largely restricted to joints of the limbs and the extremities.


Subject(s)
Alphavirus Infections/immunology , Alphavirus Infections/virology , Arthritis, Experimental/immunology , Arthritis, Experimental/virology , Arthritis, Infectious/immunology , Arthritis, Infectious/virology , Interferon Type I/metabolism , Alphavirus Infections/pathology , Animals , Arthritis, Experimental/pathology , Arthritis, Infectious/pathology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Chikungunya virus/physiology , Female , Foot , Host-Pathogen Interactions/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Ross River virus/immunology , Ross River virus/pathogenicity , Ross River virus/physiology , Temperature , Viral Load , Virus Replication/immunology , Virus Replication/physiology
6.
Arch Virol ; 163(1): 255-258, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28939977

ABSTRACT

Rocio virus (ROCV) is an arbovirus belonging to the genus Flavivirus, family Flaviviridae. We present an updated sequence of ROCV strain SPH 34675 (GenBank: AY632542.4), the only available full genome sequence prior to this study. Using next-generation sequencing of the entire genome, we reveal substantial sequence variation from the prototype sequence, with 30 nucleotide differences amounting to 14 amino acid changes, as well as significant changes to predicted 3'UTR RNA structures. Our results present an updated and corrected sequence of a potential emerging human-virulent flavivirus uniquely indigenous to Brazil (GenBank: MF461639).


Subject(s)
Flavivirus/classification , Flavivirus/genetics , Genome, Viral , Amino Acid Sequence , Gene Expression Regulation, Viral , Nucleic Acid Conformation , RNA, Viral , Viral Proteins/genetics , Viral Proteins/metabolism
7.
J Virol ; 90(5): 2388-402, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26676784

ABSTRACT

UNLABELLED: West Nile virus (WNV) is a mosquito-transmitted flavivirus that naturally circulates between mosquitos and birds but can also infect humans, causing severe neurological disease. The early host response to WNV infection in vertebrates primarily relies on the type I interferon pathway; however, recent studies suggest that microRNAs (miRNAs) may also play a notable role. In this study, we assessed the role of host miRNAs in response to WNV infection in human cells. We employed small RNA sequencing (RNA-seq) analysis to determine changes in the expression of host miRNAs in HEK293 cells infected with an Australian strain of WNV, Kunjin (WNVKUN), and identified a number of host miRNAs differentially expressed in response to infection. Three of these miRNAs were confirmed to be significantly upregulated in infected cells by quantitative reverse transcription (qRT)-PCR and Northern blot analyses, and one of them, miR-532-5p, exhibited a significant antiviral effect against WNVKUN infection. We have demonstrated that miR-532-5p targets and downregulates expression of the host genes SESTD1 and TAB3 in human cells. Small interfering RNA (siRNA) depletion studies showed that both SESTD1 and TAB3 were required for efficient WNVKUN replication. We also demonstrated upregulation of mir-532-5p expression and a corresponding decrease in the expression of its targets, SESTD1 and TAB3, in the brains of WNVKUN -infected mice. Our results show that upregulation of miR-532-5p and subsequent suppression of the SESTD1 and TAB3 genes represent a host antiviral response aimed at limiting WNVKUN infection and highlight the important role of miRNAs in controlling RNA virus infections in mammalian hosts. IMPORTANCE: West Nile virus (WNV) is a significant viral pathogen that poses a considerable threat to human health across the globe. There is no specific treatment or licensed vaccine available for WNV, and deeper insight into how the virus interacts with the host is required to facilitate their development. In this study, we addressed the role of host microRNAs (miRNAs) in antiviral response to WNV in human cells. We identified miR-532-5p as a novel antiviral miRNA and showed that it is upregulated in response to WNV infection and suppresses the expression of the host genes TAB3 and SESTD1 required for WNV replication. Our results show that upregulation of miR-532-5p and subsequent suppression of the SESTD1 and TAB3 genes represent an antiviral response aimed at limiting WNV infection and highlight the important role of miRNAs in controlling virus infections in mammalian hosts.


Subject(s)
Antiviral Agents/metabolism , Carrier Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , MicroRNAs/metabolism , Virus Replication , West Nile virus/immunology , West Nile virus/physiology , Adaptor Proteins, Signal Transducing , Blotting, Northern , Carrier Proteins/metabolism , Cell Line , Gene Expression Profiling , Host-Pathogen Interactions , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Analysis, RNA
8.
J Virol ; 88(15): 8457-67, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24829359

ABSTRACT

UNLABELLED: West Nile virus (WNV) is an enveloped virus with a single-stranded positive-sense RNA genome from the Flaviviridae family. WNV is spread by mosquitoes and able to infect humans, causing encephalitis and meningitis that can be fatal; it therefore presents a significant risk for human health. In insects, innate response to RNA virus infection mostly relies on RNA interference and JAK/SAT pathways; however, some evidence indicates that it can also involve microRNAs (miRNAs). miRNAs are small noncoding RNAs that regulate gene expression at posttranscriptional level and play an important role in a number of processes, including immunity and antiviral response. In this study, we focus on the miRNA-mediated response to WNV in mosquito cells. We demonstrate that in response to WNV infection the expression of a mosquito-specific miRNA, aae-miR-2940, is selectively downregulated in Aedes albopictus cells. This miRNA is known to upregulate the metalloprotease m41 FtsH gene, which we have also shown to be required for efficient WNV replication. Correspondingly, downregulation of aae-miR-2940 reduced the metalloprotease level and restricted WNV replication. Thus, we have identified a novel miRNA-dependent mechanism of antiviral response to WNV in mosquitoes. IMPORTANCE: A detailed understanding of vector-pathogen interactions is essential to address the problems posed by vector-borne diseases. Host and viral miRNAs play an important role in regulating expression of viral and host genes involved in endogenous processes, including antiviral response. There has been no evidence to date for the role of mosquito miRNAs in response to flaviviruses. In this study, we show that downregulation of aae-miR-2940 in mosquito cells acts as a potential antiviral mechanism in the mosquito host to inhibit WNV replication by repressing the expression of the metalloprotease m41 FtsH gene, which is required for efficient WNV replication. This is the first identification of an miRNA-dependent antiviral mechanism in mosquitoes, which inhibits replication of WNV. Our findings should facilitate identification of targets in the mosquito genome that can be utilized to suppress vector population and/or limit WNV replication.


Subject(s)
Aedes/virology , Down-Regulation , MicroRNAs/biosynthesis , West Nile virus/growth & development , West Nile virus/immunology , Aedes/genetics , Aedes/immunology , Animals , Gene Expression Regulation , Insect Proteins/metabolism , Metalloproteases/metabolism
9.
Vaccines (Basel) ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39203991

ABSTRACT

Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.

10.
Sci Adv ; 10(23): eadj4735, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838150

ABSTRACT

Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.


Subject(s)
Brain , COVID-19 , Choroid Plexus , Down Syndrome , Organoids , SARS-CoV-2 , Serine Endopeptidases , Choroid Plexus/virology , Choroid Plexus/metabolism , Choroid Plexus/pathology , Organoids/virology , Organoids/metabolism , Organoids/pathology , Humans , SARS-CoV-2/physiology , COVID-19/virology , COVID-19/pathology , COVID-19/metabolism , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Down Syndrome/genetics , Brain/virology , Brain/pathology , Brain/metabolism , Neurons/metabolism , Neurons/virology , Neurons/pathology , Virus Replication , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/virology , Furin/metabolism , Furin/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Viral Tropism
11.
Viruses ; 15(5)2023 04 26.
Article in English | MEDLINE | ID: mdl-37243147

ABSTRACT

Zika virus (ZIKV) has a unique ability among flaviviruses to cross the placental barrier and infect the fetal brain causing severe abnormalities of neurodevelopment known collectively as congenital Zika syndrome. In our recent study, we demonstrated that the viral noncoding RNA (subgenomic flaviviral RNA, sfRNA) of the Zika virus induces apoptosis of neural progenitors and is required for ZIKV pathogenesis in the developing brain. Herein, we expanded on our initial findings and identified biological processes and signaling pathways affected by the production of ZIKV sfRNA in the developing brain tissue. We employed 3D brain organoids generated from induced human pluripotent stem cells (ihPSC) as an ex vivo model of viral infection in the developing brain and utilized wild type (WT) ZIKV (producing sfRNA) and mutant ZIKV (deficient in the production of sfRNA). Global transcriptome profiling by RNA-Seq revealed that the production of sfRNA affects the expression of >1000 genes. We uncovered that in addition to the activation of pro-apoptotic pathways, organoids infected with sfRNA-producing WT, but not sfRNA-deficient mutant ZIKV, which exhibited a strong down-regulation of genes involved in signaling pathways that control neuron differentiation and brain development, indicating the requirement of sfRNA for the suppression of neurodevelopment associated with the ZIKV infection. Using gene set enrichment analysis and gene network reconstruction, we demonstrated that the effect of sfRNA on pathways that control brain development occurs via crosstalk between Wnt-signaling and proapoptotic pathways.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Female , Humans , Pregnancy , Brain/metabolism , Flavivirus/genetics , Placenta/metabolism , RNA, Untranslated/genetics , Virus Replication , Wnt Signaling Pathway , Zika Virus/physiology , Subgenomic RNA/genetics
12.
Front Cell Dev Biol ; 10: 803061, 2022.
Article in English | MEDLINE | ID: mdl-35265611

ABSTRACT

Neural epidermal growth factor-like like 2 (NELL2) is a cytoplasmic and secreted glycosylated protein with six epidermal growth factor-like domains. In animal models, NELL2 is predominantly expressed in neural tissues where it regulates neuronal differentiation, polarization, and axon guidance, but little is known about the role of NELL2 in human brain development. In this study, we show that rostral neural stem cells (rNSC) derived from human-induced pluripotent stem cell (hiPSC) exhibit particularly strong NELL2 expression and that NELL2 protein is enriched at the apical side of neural rosettes in hiPSC-derived brain organoids. Following differentiation of human rostral NSC into neurons, NELL2 remains robustly expressed but changes its subcellular localization from >20 small cytoplasmic foci in NSC to one-five large peri-nuclear puncta per neuron. Unexpectedly, we discovered that in human brain organoids, NELL2 is readily detectable in the oligodendroglia and that the number of NELL2 puncta increases as oligodendrocytes mature. Artificial intelligence-based machine learning further predicts a strong association of NELL2 with multiple human white matter diseases, suggesting that NELL2 may possess yet unexplored roles in regulating oligodendrogenesis and/or myelination during human cortical development and maturation.

13.
Viruses ; 14(7)2022 07 08.
Article in English | MEDLINE | ID: mdl-35891480

ABSTRACT

Binjari virus (BinJV) is a lineage II or dual-host affiliated insect-specific flavivirus previously demonstrated as replication-deficient in vertebrate cells. Previous studies have shown that BinJV is tolerant to exchanging its structural proteins (prM-E) with pathogenic flaviviruses, making it a safe backbone for flavivirus vaccines. Here, we report generation by circular polymerase extension reaction of BinJV expressing zsGreen or mCherry fluorescent protein. Recovered BinJV reporter viruses grew to high titres (107-8 FFU/mL) in Aedes albopictus C6/36 cells assayed using immunoplaque assays (iPA). We also demonstrate that BinJV reporters could be semi-quantified live in vitro using a fluorescence microplate reader with an observed linear correlation between quantified fluorescence of BinJV reporter virus-infected C6/36 cells and iPA-quantitated virus titres. The utility of the BinJV reporter viruses was then examined in homologous and heterologous superinfection exclusion assays. We demonstrate that primary infection of C6/36 cells with BinJVzsGreen completely inhibits a secondary infection with homologous BinJVmCherry or heterologous ZIKVmCherry using fluorescence microscopy and virus quantitation by iPA. Finally, BinJVzsGreen infections were examined in vivo by microinjection of Aedes aegypti with BinJVzsGreen. At seven days post-infection, a strong fluorescence in the vicinity of salivary glands was detected in frozen sections. This is the first report on the construction of reporter viruses for lineage II insect-specific flaviviruses and establishes a tractable system for exploring flavivirus superinfection exclusion in vitro and in vivo.


Subject(s)
Aedes , Flavivirus , Superinfection , Zika Virus Infection , Zika Virus , Animals , Flavivirus/genetics , Zika Virus Infection/prevention & control
14.
PLoS Negl Trop Dis ; 16(5): e0010426, 2022 05.
Article in English | MEDLINE | ID: mdl-35536870

ABSTRACT

During 2015-2016, outbreaks of Zika virus (ZIKV) occurred in Southeast Asia and the Americas. Most ZIKV infections in humans are asymptomatic, while clinical manifestation is usually a self-limiting febrile disease with maculopapular rash. However, ZIKV is capable of inducing a range of severe neurological complications collectively described as congenital Zika syndrome (CZS). Notably, the scale and magnitude of outbreaks in Southeast Asia were significantly smaller compared to those in the Americas. Sequence comparison between epidemic-associated ZIKV strains from Southeast Asia with those from the Americas revealed a methionine to valine substitution at residue position 114 of the NS5 protein (NS5-M114V) in all the American isolates. Using an American isolate of ZIKV (Natal), we investigated the impact of NS5-M114V mutation on virus replication in cells, virulence in interferon (IFN) α/Ɵ receptor knockout (Ifnar-/-) mice, as well as replication and transmission potential in Aedes aegypti mosquitoes. We demonstrated that NS5-M114V mutation had insignificant effect on ZIKV replication efficiency in cells, its ability to degrade STAT2, and virulence in vivo, albeit viremia was slightly prolonged in mice. Furthermore, NS5-M114V mutation decreased mosquito infection and dissemination rates but had no effect on virus secretion into the saliva. Taken together, our findings support the notion that NS5-M114V mutation is unlikely to be a major determinant for virus replication and transmission potential.


Subject(s)
Aedes , Viral Nonstructural Proteins/genetics , Zika Virus Infection , Zika Virus , Animals , Interferon-alpha , Interferon-beta/genetics , Mice , Mosquito Vectors , Mutation , United States , Virus Replication
15.
Nat Commun ; 13(1): 1279, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277507

ABSTRACT

Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.


Subject(s)
Culicidae , Flavivirus , 3' Untranslated Regions/genetics , Animals , Flavivirus/genetics , Genome, Viral , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics
16.
Sci Adv ; 8(48): eadd8095, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36449607

ABSTRACT

All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection. We also show that sfRNA promotes apoptosis of neural progenitor cells in human brain organoids, leading to their disintegration. In infected human placental cells, sfRNA inhibits multiple antiviral pathways and promotes apoptosis, with signal transducer and activator of transcription 1 (STAT1) identified as a key shared factor. We further show that the production of sfRNA leads to reduced phosphorylation and nuclear translocation of STAT1 via a mechanism that involves sfRNA binding to and stabilizing viral protein NS5. Our results suggest the cooperation between viral noncoding RNA and a viral protein as a novel strategy for counteracting antiviral responses.


Subject(s)
Zika Virus Infection , Zika Virus , Pregnancy , Humans , Female , Animals , Mice , Phosphorylation , Viral Proteins , Placenta , RNA, Viral/genetics , Antiviral Agents , RNA, Untranslated/genetics , Zika Virus Infection/genetics , STAT1 Transcription Factor/genetics
17.
Pathogens ; 9(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081269

ABSTRACT

Getah virus (GETV) is a mosquito-transmitted alphavirus primarily associated with disease in horses and pigs in Asia. GETV was also reported to have been isolated from mosquitoes in Australia in 1961; however, retrieval and sequencing of the original isolates (N544 and N554), illustrated that these viruses were virtually identical to the 1955 GETVMM2021 isolate from Malaysia. K-mer mining of the >40,000 terabases of sequence data in the Sequence Read Archive followed by BLASTn confirmation identified multiple GETV sequences in biosamples from Asia (often as contaminants), but not in biosamples from Australia. In contrast, sequence reads aligning to the Australian Ross River virus (RRV) were readily identified in Australian biosamples. To explore the serological relationship between GETV and other alphaviruses, an adult wild-type mouse model of GETV was established. High levels of cross-reactivity and cross-protection were evident for convalescent sera from mice infected with GETV or RRV, highlighting the difficulties associated with the interpretation of early serosurveys reporting GETV antibodies in Australian cattle and pigs. The evidence that GETV circulates in Australia is thus not compelling.

18.
Nat Commun ; 11(1): 2205, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371874

ABSTRACT

Flaviviruses, including Zika virus (ZIKV), utilise host mRNA degradation machinery to produce subgenomic flaviviral RNA (sfRNA). In mammalian hosts, this noncoding RNA facilitates replication and pathogenesis of flaviviruses by inhibiting IFN-signalling, whereas the function of sfRNA in mosquitoes remains largely elusive. Herein, we conduct a series of in vitro and in vivo experiments to define the role of ZIKV sfRNA in infected Aedes aegypti employing viruses deficient in production of sfRNA. We show that sfRNA-deficient viruses have reduced ability to disseminate and reach saliva, thus implicating the role for sfRNA in productive infection and transmission. We also demonstrate that production of sfRNA alters the expression of mosquito genes related to cell death pathways, and prevents apoptosis in mosquito tissues. Inhibition of apoptosis restored replication and transmission of sfRNA-deficient mutants. Hence, we propose anti-apoptotic activity of sfRNA as the mechanism defining its role in ZIKV transmission.


Subject(s)
Aedes/genetics , Apoptosis/genetics , Mosquito Vectors/genetics , RNA, Viral/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Aedes/cytology , Aedes/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Gene Expression Regulation , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Mosquito Vectors/cytology , Mosquito Vectors/virology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Vero Cells , Virus Replication/genetics , Zika Virus/physiology , Zika Virus Infection/transmission , Zika Virus Infection/virology
19.
Nat Microbiol ; 4(5): 876-887, 2019 05.
Article in English | MEDLINE | ID: mdl-30886357

ABSTRACT

Arboviruses cycle between, and replicate in, both invertebrate and vertebrate hosts, which for Zika virus (ZIKV) involves Aedes mosquitoes and primates1. The viral determinants required for replication in such obligate hosts are under strong purifying selection during natural virus evolution, making it challenging to resolve which determinants are optimal for viral fitness in each host. Herein we describe a deep mutational scanning (DMS) strategy2-5 whereby a viral cDNA library was constructed containing all codon substitutions in the C-terminal 204 amino acids of ZIKV envelope protein (E). The cDNA library was transfected into C6/36 (Aedes) and Vero (primate) cells, with subsequent deep sequencing and computational analyses of recovered viruses showing that substitutions K316Q and S461G, or Q350L and T397S, conferred substantial replicative advantages in mosquito and primate cells, respectively. A 316Q/461G virus was constructed and shown to be replication-defective in mammalian cells due to severely compromised virus particle formation and secretion. The 316Q/461G virus was also highly attenuated in human brain organoids, and illustrated utility as a vaccine in mice. This approach can thus imitate evolutionary selection in a matter of days and identify amino acids key to the regulation of virus replication in specific host environments.


Subject(s)
DNA Mutational Analysis/methods , Viral Tropism , Zika Virus Infection/virology , Zika Virus/physiology , Aedes/virology , Animals , Biological Evolution , Chlorocebus aethiops , Female , Host Specificity , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Mosquito Vectors/virology , Mutation , Selection, Genetic , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , Zika Virus/chemistry , Zika Virus/genetics
20.
Antiviral Res ; 159: 13-25, 2018 11.
Article in English | MEDLINE | ID: mdl-30217649

ABSTRACT

The common feature of flaviviral infection is the accumulation of abundant virus-derived noncoding RNA, named flaviviral subgenomic RNA (sfRNA) in infected cells. This RNA represents a product of incomplete degradation of viral genomic RNA by the cellular 5'-3' exoribonuclease XRN1 that stalls at the conserved highly structured elements in the 3' untranslated region (UTR). This mechanism of sfRNA generation was discovered a decade ago and since then sfRNA has been a focus of intense research. The ability of flaviviruses to produce sfRNA was shown to be evolutionary conserved in all members of Flavivirus genus. Mutations in the 3'UTR that affect production of sfRNAs and their interactions with host factors showed that sfRNAs are responsible for viral pathogenicity, host adaptation, and emergence of new pathogenic strains. RNA structural elements required for XRN1 stalling have been elucidated and the role of sfRNAs in inhibiting host antiviral responses in arthropod and vertebrate hosts has been demonstrated. Some molecular mechanisms determining these properties of sfRNA have been recently characterized, while other aspects of sfRNA functions remain an open avenue for future research. In this review we summarise the current state of knowledge on the mechanisms of generation and functional roles of sfRNAs in the life cycle of flaviviruses and highlight the gaps in our knowledge to be addressed in the future.


Subject(s)
Exoribonucleases/metabolism , Flavivirus/genetics , RNA, Viral/genetics , 3' Untranslated Regions , Animals , Genome, Viral , Host-Pathogen Interactions , Humans , Nucleic Acid Conformation , RNA Stability , Research
SELECTION OF CITATIONS
SEARCH DETAIL