Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38814543

ABSTRACT

PURPOSE: Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS: Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS: OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION: The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.

2.
bioRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37829615

ABSTRACT

1Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. Any of these abnormalities can invalidate experiments, so detecting them is crucial. The ongoing decline of next-generation sequencing prices has made whole genome sequencing (WGS) an effective quality control option, since WGS can detect any abnormality involving changes to DNA sequences or presence of unwanted sequences. However, this approach has suffered from a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.

3.
STAR Protoc ; 2(4): 100907, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34746865

ABSTRACT

Gateway cloning employs the use of the ccdb toxin and has low colony numbers, making it difficult to apply at scale to clone libraries of cDNA vectors. In this protocol, we describe MegaGate, a toxin-less Gateway technology capable of robust cDNA library cloning that is efficient, cheap, and scalable. MegaGate eliminates the ccdb toxin used in Gateway recombinase cloning and instead utilizes meganuclease-mediated digestion to eliminate background vectors during cloning and is 99.8% efficient with high colony numbers. For complete details on the use and execution of this protocol, please refer to Kramme et al. (2021).


Subject(s)
Cloning, Molecular/methods , Polymerase Chain Reaction/methods , Recombinant Fusion Proteins , DNA, Complementary/genetics , Escherichia coli/genetics , Gene Library , Plasmids/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
4.
Cell Rep Methods ; 1(6): 100082, 2021 10 25.
Article in English | MEDLINE | ID: mdl-35474898

ABSTRACT

With the recent advancements in genome editing, next-generation sequencing (NGS), and scalable cloning techniques, scientists can now conduct genetic screens at unprecedented levels of scale and precision. With such a multitude of technologies, there is a need for a simple yet comprehensive pipeline to enable systematic mammalian genetic screening. In this study, we develop unique algorithms for target identification and a toxin-less Gateway cloning tool, termed MegaGate, for library cloning which, when combined with existing genetic perturbation methods and NGS-coupled readouts, enable versatile engineering of relevant mammalian cell lines. Our integrated pipeline for sequencing-based target ascertainment and modular perturbation screening (STAMPScreen) can thus be utilized for a host of cell state engineering applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mammals/genetics , Gene Library , Genetic Testing
5.
Org Lett ; 20(17): 5502-5505, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30125112

ABSTRACT

A synthetic strategy formally equivalent to an intermolecular hexadehydro-Diels-Alder (HDDA) reaction is described. Sulfur-based linkers were designed and constructed by joining terminal alkynes or diynes using alkyne thiolate chemistry. The resulting tetraynes and triynes successfully underwent HDDA cyclization and benzyne trapping. Linker removal by reductive desulfurization was uneventful. The strategy was also found suitable for the tetradehydro-Diels-Alder (TDDA) reaction.


Subject(s)
Alkynes/chemistry , Benzene Derivatives/chemistry , Cyclization , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL