Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 18(5): e1010161, 2022 05.
Article in English | MEDLINE | ID: mdl-35560157

ABSTRACT

Epidemiological and clinical studies have found associations between depression and cardiovascular disease risk factors, and coronary artery disease patients with depression have worse prognosis. The genetic relationship between depression and these cardiovascular phenotypes is not known. We here investigated overlap at the genome-wide level and in individual loci between depression, coronary artery disease and cardiovascular risk factors. We used the bivariate causal mixture model (MiXeR) to quantify genome-wide polygenic overlap and the conditional/conjunctional false discovery rate (pleioFDR) method to identify shared loci, based on genome-wide association study summary statistics on depression (n = 450,619), coronary artery disease (n = 502,713) and nine cardiovascular risk factors (n = 204,402-776,078). Genetic loci were functionally annotated using FUnctional Mapping and Annotation (FUMA). Of 13.9K variants influencing depression, 9.5K (SD 1.0K) were shared with body-mass index. Of 4.4K variants influencing systolic blood pressure, 2K were shared with depression. ConjFDR identified 79 unique loci associated with depression and coronary artery disease or cardiovascular risk factors. Six genomic loci were associated jointly with depression and coronary artery disease, 69 with blood pressure, 49 with lipids, 9 with type 2 diabetes and 8 with c-reactive protein at conjFDR < 0.05. Loci associated with increased risk for depression were also associated with increased risk of coronary artery disease and higher total cholesterol, low-density lipoprotein and c-reactive protein levels, while there was a mixed pattern of effect direction for the other risk factors. Functional analyses of the shared loci implicated metabolism of alpha-linolenic acid pathway for type 2 diabetes. Our results showed polygenic overlap between depression, coronary artery disease and several cardiovascular risk factors and suggest molecular mechanisms underlying the association between depression and increased cardiovascular disease risk.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Diabetes Mellitus, Type 2 , C-Reactive Protein/genetics , Cardiovascular Diseases/genetics , Coronary Artery Disease/genetics , Depression/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics
2.
Mol Psychiatry ; 28(7): 3033-3043, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36653674

ABSTRACT

Lithium (Li) is recommended for long-term treatment of bipolar disorder (BD). However, its mechanism of action is still poorly understood. Induced pluripotent stem cell (iPSC)-derived brain organoids have emerged as a powerful tool for modeling BD-related disease mechanisms. We studied the effects of 1 mM Li treatment for 1 month in iPSC-derived human cortical spheroids (hCS) from 10 healthy controls (CTRL) and 11 BD patients (6 Li-responders, Li-R, and 5 Li non-treated, Li-N). At day 180 of differentiation, BD hCS showed smaller size, reduced proportion of neurons, decreased neuronal excitability and reduced neural network activity compared to CTRL hCS. Li rescued excitability of BD hCS neurons by exerting an opposite effect in the two diagnostic groups, increasing excitability in BD hCS and decreasing it in CTRL hCS. We identified 132 Li-associated differentially expressed genes (DEGs), which were overrepresented in sodium ion homeostasis and kidney-related pathways. Moreover, Li regulated secretion of pro-inflammatory cytokines and increased mitochondrial reserve capacity in BD hCS. Through long-term Li treatment of a human 3D brain model, this study partly elucidates the functional and transcriptional mechanisms underlying the clinical effects of Li, such as rescue of neuronal excitability and neuroprotection. Our results also underscore the substantial influence of treatment duration in Li studies. Lastly, this study illustrates the potential of patient iPSC-derived 3D brain models for precision medicine in psychiatry.


Subject(s)
Bipolar Disorder , Induced Pluripotent Stem Cells , Humans , Lithium/pharmacology , Lithium/therapeutic use , Lithium/metabolism , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Induced Pluripotent Stem Cells/metabolism , Lithium Compounds/therapeutic use , Neurons/metabolism
3.
Mol Psychiatry ; 28(11): 4924-4932, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37759039

ABSTRACT

Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , White Matter , Humans , Genome-Wide Association Study , Diffusion Tensor Imaging/methods , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics
4.
Brain ; 146(8): 3392-3403, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36757824

ABSTRACT

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Epilepsies, Partial , Epilepsy, Generalized , Humans , Autism Spectrum Disorder/genetics , Genome-Wide Association Study , Epilepsies, Partial/genetics , Genomics , Epilepsy, Generalized/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics
5.
Mol Psychiatry ; 27(12): 5167-5176, 2022 12.
Article in English | MEDLINE | ID: mdl-36100668

ABSTRACT

Patients with schizophrenia have consistently shown brain volumetric abnormalities, implicating both etiological and pathological processes. However, the genetic relationship between schizophrenia and brain volumetric abnormalities remains poorly understood. Here, we applied novel statistical genetic approaches (MiXeR and conjunctional false discovery rate analysis) to investigate genetic overlap with mixed effect directions using independent genome-wide association studies of schizophrenia (n = 130,644) and brain volumetric phenotypes, including subcortical brain and intracranial volumes (n = 33,735). We found brain volumetric phenotypes share substantial genetic variants (74-96%) with schizophrenia, and observed 107 distinct shared loci with sign consistency in independent samples. Genes mapped by shared loci revealed (1) significant enrichment in neurodevelopmental biological processes, (2) three co-expression clusters with peak expression at the prenatal stage, and (3) genetically imputed thalamic expression of CRHR1 and ARL17A was associated with the thalamic volume as early as in childhood. Together, our findings provide evidence of shared genetic architecture between schizophrenia and brain volumetric phenotypes and suggest that altered early neurodevelopmental processes and brain development in childhood may be involved in schizophrenia development.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Genome-Wide Association Study , Brain/pathology , Phenotype , Thalamus , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Genetic Loci
6.
Brain ; 145(1): 142-153, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34273149

ABSTRACT

Migraine is three times more prevalent in people with bipolar disorder or depression. The relationship between schizophrenia and migraine is less certain although glutamatergic and serotonergic neurotransmission are implicated in both. A shared genetic basis to migraine and mental disorders has been suggested but previous studies have reported weak or non-significant genetic correlations and five shared risk loci. Using the largest samples to date and novel statistical tools, we aimed to determine the extent to which migraine's polygenic architecture overlaps with bipolar disorder, depression and schizophrenia beyond genetic correlation, and to identify shared genetic loci. Summary statistics from genome-wide association studies were acquired from large-scale consortia for migraine (n cases = 59 674; n controls = 316 078), bipolar disorder (n cases = 20 352; n controls = 31 358), depression (n cases = 170 756; n controls = 328 443) and schizophrenia (n cases = 40 675, n controls = 64 643). We applied the bivariate causal mixture model to estimate the number of disorder-influencing variants shared between migraine and each mental disorder, and the conditional/conjunctional false discovery rate method to identify shared loci. Loci were functionally characterized to provide biological insights. Univariate MiXeR analysis revealed that migraine was substantially less polygenic (2.8 K disorder-influencing variants) compared to mental disorders (8100-12 300 disorder-influencing variants). Bivariate analysis estimated that 800 (SD = 300), 2100 (SD = 100) and 2300 (SD = 300) variants were shared between bipolar disorder, depression and schizophrenia, respectively. There was also extensive overlap with intelligence (1800, SD = 300) and educational attainment (2100, SD = 300) but not height (1000, SD = 100). We next identified 14 loci jointly associated with migraine and depression and 36 loci jointly associated with migraine and schizophrenia, with evidence of consistent genetic effects in independent samples. No loci were associated with migraine and bipolar disorder. Functional annotation mapped 37 and 298 genes to migraine and each of depression and schizophrenia, respectively, including several novel putative migraine genes such as L3MBTL2, CACNB2 and SLC9B1. Gene-set analysis identified several putative gene sets enriched with mapped genes including transmembrane transport in migraine and schizophrenia. Most migraine-influencing variants were predicted to influence depression and schizophrenia, although a minority of mental disorder-influencing variants were shared with migraine due to the difference in polygenicity. Similar overlap with other brain-related phenotypes suggests this represents a pool of 'pleiotropic' variants that influence vulnerability to diverse brain-related disorders and traits. We also identified specific loci shared between migraine and each of depression and schizophrenia, implicating shared molecular mechanisms and highlighting candidate migraine genes for experimental validation.


Subject(s)
Mental Disorders , Migraine Disorders , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Mental Disorders/genetics , Migraine Disorders/genetics , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics
7.
Addict Biol ; 28(6): e13282, 2023 06.
Article in English | MEDLINE | ID: mdl-37252880

ABSTRACT

Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Humans , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Schizophrenia/genetics , Depression , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Genetic Loci
8.
PLoS Genet ; 16(5): e1008612, 2020 05.
Article in English | MEDLINE | ID: mdl-32427991

ABSTRACT

Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from a reference panel of 11 million SNPs, to estimate these quantities from genome-wide association studies (GWAS) summary statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities (as a fraction of the reference panel) ranging from ≃ 2 × 10-5 to ≃ 4 × 10-3, with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of z-scores), and assessing compatibility of replication and discovery GWAS summary statistics.


Subject(s)
Genetic Association Studies , Genetic Heterogeneity , Inheritance Patterns/physiology , Models, Genetic , Polymorphism, Single Nucleotide , Computer Simulation , Genetic Association Studies/methods , Genetic Association Studies/statistics & numerical data , Genetics, Population , Genome-Wide Association Study/methods , Genome-Wide Association Study/statistics & numerical data , Heterozygote , Humans , Linkage Disequilibrium , Multifactorial Inheritance , Normal Distribution , Phenotype , Quantitative Trait, Heritable
9.
Alzheimers Dement ; 19(11): 5151-5158, 2023 11.
Article in English | MEDLINE | ID: mdl-37132098

ABSTRACT

INTRODUCTION: There is a pressing need for non-invasive, cost-effective tools for early detection of Alzheimer's disease (AD). METHODS: Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Cox proportional models were conducted to develop a multimodal hazard score (MHS) combining age, a polygenic hazard score (PHS), brain atrophy, and memory to predict conversion from mild cognitive impairment (MCI) to dementia. Power calculations estimated required clinical trial sample sizes after hypothetical enrichment using the MHS. Cox regression determined predicted age of onset for AD pathology from the PHS. RESULTS: The MHS predicted conversion from MCI to dementia (hazard ratio for 80th versus 20th percentile: 27.03). Models suggest that application of the MHS could reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of amyloid and tau. DISCUSSION: The MHS may improve early detection of AD for use in memory clinics or for clinical trial enrichment. HIGHLIGHTS: A multimodal hazard score (MHS) combined age, genetics, brain atrophy, and memory. The MHS predicted time to conversion from mild cognitive impairment to dementia. MHS reduced hypothetical Alzheimer's disease (AD) clinical trial sample sizes by 67%. A polygenic hazard score predicted age of onset of AD neuropathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Brain/diagnostic imaging , Brain/pathology , Cognition , Atrophy/pathology , Disease Progression
10.
Mol Psychiatry ; 26(11): 6789-6805, 2021 11.
Article in English | MEDLINE | ID: mdl-34075196

ABSTRACT

Lithium (Li), valproate (VPA) and lamotrigine (LTG) are commonly used to treat bipolar disorder (BD). While their clinical efficacy is well established, the mechanisms of action at the molecular level are still incompletely understood. Here we investigated the molecular effects of Li, LTG and VPA treatment in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) generated from 3 healthy controls (CTRL), 3 affective disorder Li responsive patients (Li-R) and 3 Li non-treated patients (Li-N) after 6 h and 1 week of exposure. Differential expression (DE) analysis after 6 h of treatment revealed a transcriptional signature that was associated with all three drugs and most significantly enriched for ribosome and oxidative phosphorylation (OXPHOS) pathways. In addition to the shared DE genes, we found that Li exposure was associated with 554 genes uniquely regulated in Li-R NPCs and enriched for spliceosome, OXPHOS and thermogenesis pathways. In-depth analysis of the treatment-associated transcripts uncovered a significant decrease in intron retention rate, suggesting that the beneficial influence of these drugs might partly be related to splicing. We examined the mitochondrial respiratory function of the NPCs by exploring the drugs' effects on oxygen consumption rate (OCR) and glycolytic rate (ECAR). Li improved OCR levels only in Li-R NPCs by enhancing maximal respiration and reserve capacity, while VPA enhanced maximal respiration and reserve capacity in Li-N NPCs. Overall, our findings further support the involvement of mitochondrial functions in the molecular mechanisms of mood stabilizers and suggest novel mechanisms related to the spliceosome, which warrant further investigation.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Humans , Lithium/pharmacology , Respiration , Valproic Acid/pharmacology
11.
Mol Psychiatry ; 26(8): 4055-4065, 2021 08.
Article in English | MEDLINE | ID: mdl-31792363

ABSTRACT

Differential diagnosis between childhood onset attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) remains a challenge, mainly due to overlapping symptoms and high rates of comorbidity. Despite this, genetic correlation reported for these disorders is low and non-significant. Here we aimed to better characterize the genetic architecture of these disorders utilizing recent large genome-wide association studies (GWAS). We analyzed independent GWAS summary statistics for ADHD (19,099 cases and 34,194 controls) and BD (20,352 cases and 31,358 controls) applying the conditional/conjunctional false discovery rate (condFDR/conjFDR) statistical framework that increases the power to detect novel phenotype-specific and shared loci by leveraging the combined power of two GWAS. We observed cross-trait polygenic enrichment for ADHD conditioned on associations with BD, and vice versa. Leveraging this enrichment, we identified 19 novel ADHD risk loci and 40 novel BD risk loci at condFDR <0.05. Further, we identified five loci jointly associated with ADHD and BD (conjFDR < 0.05). Interestingly, these five loci show concordant directions of effect for ADHD and BD. These results highlight a shared underlying genetic risk for ADHD and BD which may help to explain the high comorbidity rates and difficulties in differentiating between ADHD and BD in the clinic. Improving our understanding of the underlying genetic architecture of these disorders may aid in the development of novel stratification tools to help reduce these diagnostic difficulties.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Bipolar Disorder , Attention Deficit Disorder with Hyperactivity/genetics , Bipolar Disorder/genetics , Child , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
12.
Mol Psychiatry ; 26(8): 3876-3883, 2021 08.
Article in English | MEDLINE | ID: mdl-32047264

ABSTRACT

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.


Subject(s)
Genome-Wide Association Study , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Middle Aged , Putamen , Thalamus
13.
Am J Med Genet B Neuropsychiatr Genet ; 189(6): 207-218, 2022 09.
Article in English | MEDLINE | ID: mdl-35841185

ABSTRACT

Recent genome-wide association studies of mood instability (MOOD) have found significant positive genetic correlation with major depression (DEP) and weak correlations with other psychiatric disorders. We investigated the polygenic overlap between MOOD and psychiatric disorders beyond genetic correlation to better characterize putative shared genetic determinants. GWAS summary statistics for schizophrenia (SCZ, n = 105,318), bipolar disorder (BIP, n = 413,466), DEP (n = 450,619), attention-deficit hyperactivity disorder (ADHD, n = 53,293), and MOOD (n = 363,705) were analyzed using the bivariate causal mixture model and conjunctional false discovery rate methods. MOOD correlated positively with all psychiatric disorders, but with wide variation in strength (rg = 0.10-0.62). Of 10.4 K genomic variants influencing MOOD, 4 K-9.4 K influenced psychiatric disorders. Furthermore, MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD at 25. Fifty-three jointly associated loci were overlapping across two or more disorders, seven of which had discordant effect directions on psychiatric disorders. Genes mapped to loci associated with MOOD and all four disorders were enriched in a single gene-set, "synapse organization." The extensive polygenic overlap indicates shared molecular underpinnings across MOOD and psychiatric disorders. However, distinct patterns of genetic correlation and effect directions may relate to differences in the core clinical features of each disorder.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics
14.
Neuroimage ; 244: 118603, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34560273

ABSTRACT

Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is explained by the genetic variants discovered so far. Here we extended the Multivariate Omnibus Statistical Test (MOSTest) and applied it to genome-wide association studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical morphology robustly replicated in 8,060 children of mixed ethnicity from the Adolescent Brain Cognitive Development (ABCD) Study®. This reflects more than 8-fold increase in genetic discovery at no cost to generalizability compared to the commonly used univariate GWAS methods applied to region of interest (ROI) data. Functional follow up including gene-based analyses implicated 10% of all protein-coding genes and pointed towards pathways involved in neurogenesis and cell differentiation. Power analysis indicated that applying the MOSTest to vertex-wise structural MRI data triples the effective sample size compared to conventional univariate GWAS approaches. The large boost in power obtained with the vertex-wise MOSTest together with pronounced replication rates and highlighted biologically meaningful pathways underscores the advantage of multivariate approaches in the context of highly distributed polygenic architecture of the human brain.


Subject(s)
Cerebral Cortex/anatomy & histology , Genetic Loci/physiology , Genome-Wide Association Study/methods , Aged , Child , Female , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multifactorial Inheritance , Neuroimaging/methods , United Kingdom
15.
Bioinformatics ; 36(18): 4749-4756, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32539089

ABSTRACT

MOTIVATION: Determining the relative contributions of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here, we present Annotation Informed-MiXeR, a likelihood-based method for estimating the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. RESULTS: Extensive simulations demonstrate that the model is valid for a broad range of genetic architectures. The model suggests that complex human phenotypes substantially differ in the number of causal variants, their localization in the genome and their effect sizes. Specifically, the exons of protein-coding genes harbor more than 90% of variants influencing type 2 diabetes and inflammatory bowel disease, making them good candidates for whole-exome studies. In contrast, <10% of the causal variants for schizophrenia, bipolar disorder and attention-deficit/hyperactivity disorder are located in protein-coding exons, indicating a more substantial role of regulatory mechanisms in the pathogenesis of these disorders. AVAILABILITY AND IMPLEMENTATION: The software is available at: https://github.com/precimed/mixer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Diabetes Mellitus, Type 2/genetics , Humans , Likelihood Functions , Phenotype , Software
16.
Psychol Med ; : 1-11, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33653435

ABSTRACT

Abstract. BACKGROUND: Altered expression of the complement component C4A gene is a known risk factor for schizophrenia. Further, predicted brain C4A expression has also been associated with memory function highlighting that altered C4A expression in the brain may be relevant for cognitive and behavioral traits. METHODS: We obtained genetic information and performance measures on seven cognitive tasks for up to 329 773 individuals from the UK Biobank, as well as brain imaging data for a subset of 33 003 participants. Direct genotypes for variants (n = 3213) within the major histocompatibility complex region were used to impute C4 structural variation, from which predicted expression of the C4A and C4B genes in human brain tissue were predicted. We investigated if predicted brain C4A or C4B expression were associated with cognitive performance and brain imaging measures using linear regression analyses. RESULTS: We identified significant negative associations between predicted C4A expression and performance on select cognitive tests, and significant associations with MRI-based cortical thickness and surface area in select regions. Finally, we observed significant inconsistent partial mediation of the effects of predicted C4A expression on cognitive performance, by specific brain structure measures. CONCLUSIONS: These results demonstrate that the C4 risk locus is associated with the central endophenotypes of cognitive performance and brain morphology, even when considered independently of other genetic risk factors and in individuals without mental or neurological disorders.

18.
Mol Psychiatry ; 25(4): 844-853, 2020 04.
Article in English | MEDLINE | ID: mdl-30610197

ABSTRACT

Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders associated with cognitive impairment, which is considered a major determinant of functional outcome. Despite this, the etiology of the cognitive impairment is poorly understood, and no satisfactory cognitive treatments exist. Increasing evidence indicates that genetic risk for SCZ may contribute to cognitive impairment, whereas the genetic relationship between BD and cognitive function remains unclear. Here, we combined large genome-wide association study data on SCZ (n = 82,315), BD (n = 51,710), and general intelligence (n = 269,867) to investigate overlap in common genetic variants using conditional false discovery rate (condFDR) analysis. We observed substantial genetic enrichment in both SCZ and BD conditional on associations with intelligence indicating polygenic overlap. Using condFDR analysis, we leveraged this enrichment to increase statistical power and identified 75 distinct genomic loci associated with both SCZ and intelligence, and 12 loci associated with both BD and intelligence at conjunctional FDR < 0.01. Among these loci, 20 are novel for SCZ, and four are novel for BD. Most SCZ risk alleles (61 of 75, 81%) were associated with poorer cognitive performance, whereas most BD risk alleles (9 of 12, 75%) were associated with better cognitive performance. A gene set analysis of the loci shared between SCZ and intelligence implicated biological processes related to neurodevelopment, synaptic integrity, and neurotransmission; the same analysis for BD was underpowered. Altogether, the study demonstrates that both SCZ and BD share genetic influences with intelligence, albeit in a different manner, providing new insights into their genetic architectures.


Subject(s)
Bipolar Disorder/genetics , Intelligence/genetics , Schizophrenia/genetics , Adult , Cognitive Dysfunction/genetics , Databases, Genetic , Female , Genetic Loci , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Male , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics
19.
Mol Psychiatry ; 25(11): 3053-3065, 2020 11.
Article in English | MEDLINE | ID: mdl-30279459

ABSTRACT

The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10-16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Hippocampus/anatomy & histology , Hippocampus/pathology , Neuroimaging , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Schizophrenia/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Child , Child, Preschool , Female , Genome-Wide Association Study , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Male , Middle Aged , Schizophrenia/diagnostic imaging , Young Adult
20.
Hum Mol Genet ; 27(R1): R22-R28, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29522091

ABSTRACT

Structural neuroimaging measures based on magnetic resonance imaging have been at the forefront of imaging genetics. Global efforts to ensure homogeneity of measurements across study sites have enabled large-scale imaging genetic projects, accumulating nearly 50K samples for genome-wide association studies (GWAS). However, not many novel genetic variants have been identified by these GWAS, despite the high heritability of structural neuroimaging measures. Here, we discuss the limitations of using heritability as a guidance for assessing statistical power of GWAS, and highlight the importance of discoverability-which is the power to detect genetic variants for a given phenotype depending on its unique genomic architecture and GWAS sample size. Further, we present newly developed methods that boost genetic discovery in imaging genetics. By redefining imaging measures independent of traditional anatomical conventions, it is possible to improve discoverability, enabling identification of more genetic effects. Moreover, by leveraging enrichment priors from genomic annotations and independent GWAS of pleiotropic traits, we can better characterize effect size distributions, and identify reliable and replicable loci associated with structural neuroimaging measures. Statistical tools leveraging novel insights into the genetic discoverability of human traits, promises to accelerate the identification of genetic underpinnings underlying brain structural variation.


Subject(s)
Brain/anatomy & histology , Genome-Wide Association Study , Neuroimaging/trends , Brain/diagnostic imaging , Genetic Pleiotropy/genetics , Humans , Magnetic Resonance Imaging , Phenotype , Polymorphism, Single Nucleotide/genetics , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL