Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38242087

ABSTRACT

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Models, Biological , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Epigenomics , Genomics , Glioblastoma/genetics , Glioblastoma/pathology , Single-Cell Analysis , Tumor Microenvironment , Genetic Heterogeneity
2.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29056344

ABSTRACT

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Subject(s)
Neoplasms/genetics , Adult , Child , Cluster Analysis , DNA Polymerase II/genetics , DNA Polymerase III/genetics , DNA Replication , Humans , Mutation , Neoplasms/classification , Neoplasms/pathology , Neoplasms/therapy , Poly-ADP-Ribose Binding Proteins/genetics
3.
Curr Issues Mol Biol ; 46(4): 3294-3312, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38666936

ABSTRACT

Heterosynaptic plasticity, along with Hebbian homosynaptic plasticity, is an important mechanism ensuring the stable operation of learning neuronal networks. However, whether heterosynaptic plasticity occurs in the whole brain in vivo, and what role(s) in brain function in vivo it could play, remains unclear. Here, we used an optogenetics approach to apply a model of intracellular tetanization, which was established and employed to study heterosynaptic plasticity in brain slices, to study the plasticity of response properties of neurons in the mouse visual cortex in vivo. We show that optogenetically evoked high-frequency bursts of action potentials (optogenetic tetanization) in the principal neurons of the visual cortex induce long-term changes in the responses to visual stimuli. Optogenetic tetanization had distinct effects on responses to different stimuli, as follows: responses to optimal and orthogonal orientations decreased, responses to null direction did not change, and responses to oblique orientations increased. As a result, direction selectivity of the neurons decreased and orientation tuning became broader. Since optogenetic tetanization was a postsynaptic protocol, applied in the absence of sensory stimulation, and, thus, without association of presynaptic activity with bursts of action potentials, the observed changes were mediated by mechanisms of heterosynaptic plasticity. We conclude that heterosynaptic plasticity can be induced in vivo and propose that it may play important homeostatic roles in operation of neural networks by helping to prevent runaway dynamics of responses to visual stimuli and to keep the tuning of neuronal responses within the range optimized for the encoding of multiple features in population activity.

4.
J Org Chem ; 89(14): 10338-10343, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38943599

ABSTRACT

Manganese complexes [(arene)Mn(CO)3]+ were prepared in one step from arenes and Mn(CO)5Br. They were found to be efficient catalysts in the carbonyl cyanation with TMSCN, CO2 fixation by epoxides, and direct reductive amination in the presence of syngas. The amination reaction tolerated various reducible functional groups. The synergy of carbon monoxide and hydrogen in syngas provides high efficiency of the catalytic system. The developed protocols do not require an inert atmosphere, and the catalysts can be handled in air.

5.
J Nat Prod ; 87(4): 664-674, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38362867

ABSTRACT

We report the molecular mechanism of action of gausemycins and the isolation of new members of the family, gausemycins C (1c), D (1d), E (1e), and F (1f), the minor components of the mixture. To elucidate the mechanism of action of gausemycins, we investigated the antimicrobial activity of the most active compounds, gausemycins A and B, in the presence of Ca2+, other metal ions, and phosphate. Gausemycins require a significantly higher Ca2+ concentration for maximum activity than daptomycin but lower than that required for malacidine and cadasides. Species-specific antimicrobial activity was found upon testing against a wide panel of Gram-positive bacteria. Membranoactivity of gausemycins was demonstrated upon their interactions with model lipid bilayers and micelles. The pore-forming ability was found to be dramatically dependent on the Ca2+ concentration and the membrane lipid composition. An NMR study of gausemycin B in zwitterionic and anionic micelles suggested the putative structure of the gausemycin/membrane complex and revealed the binding of Ca2+ by the macrocyclic domain of the antibiotic.


Subject(s)
Anti-Bacterial Agents , Calcium , Gram-Positive Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Calcium/metabolism , Molecular Structure , Gram-Positive Bacteria/drug effects , Cell Membrane/drug effects , Daptomycin/pharmacology , Daptomycin/chemistry , Lipid Bilayers/chemistry , Micelles
6.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125830

ABSTRACT

The increase in the resistance of mutant strains of Neisseria gonorrhoeae to the antibiotic ceftriaxone is pronounced in the decrease in the second-order acylation rate constant, k2/KS, by penicillin-binding protein 2 (PBP2). These changes can be caused by both the decrease in the acylation rate constant, k2, and the weakening of the binding affinity, i.e., an increase in the substrate constant, KS. A501X mutations in PBP2 affect second-order acylation rate constants. The PBP2A501V variant exhibits a higher k2/KS value, whereas for PBP2A501R and PBP2A501P variants, these values are lower. We performed molecular dynamic simulations with both classical and QM/MM potentials to model both acylation energy profiles and conformational dynamics of four PBP2 variants to explain the origin of k2/KS changes. The acylation reaction occurs in two elementary steps, specifically, a nucleophilic attack by the oxygen atom of the Ser310 residue and C-N bond cleavage in the ß-lactam ring accompanied by the elimination of the leaving group of ceftriaxone. The energy barrier of the first step increases for PBP2 variants with a decrease in the observed k2/KS value. Submicrosecond classic molecular dynamic trajectories with subsequent cluster analysis reveal that the conformation of the ß3-ß4 loop switches from open to closed and its flexibility decreases for PBP2 variants with a lower k2/KS value. Thus, the experimentally observed decrease in the k2/KS in A501X variants of PBP2 occurs due to both the decrease in the acylation rate constant, k2, and the increase in KS.


Subject(s)
Ceftriaxone , Molecular Dynamics Simulation , Neisseria gonorrhoeae , Penicillin-Binding Proteins , Ceftriaxone/pharmacology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/metabolism , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Mutation , Drug Resistance, Bacterial/genetics , Acylation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Serine-Type D-Ala-D-Ala Carboxypeptidase
7.
Hippocampus ; 33(1): 18-36, 2023 01.
Article in English | MEDLINE | ID: mdl-36484471

ABSTRACT

The role of astrocytes in modulating synaptic plasticity is an important question that until recently was not addressed due to limitations of previously existing technology. In the present study, we took an advantage of optogenetics to specifically activate astrocytes in hippocampal slices in order to study effects on synaptic function. Using the AAV-based delivery strategy, we expressed the ionotropic channelrhodopsin-2 (ChR2) or the metabotropic Gq-coupled Opto-a1AR opsins specifically in hippocampal astrocytes to compare different modalities of astrocyte activation. In electrophysiological experiments, we observed a depression of basal field excitatory postsynaptic potentials (fEPSPs) in the CA1 hippocampal layer following light stimulation of astrocytic ChR2. The ChR2-mediated depression increased under simultaneous light and electrical theta-burst stimulation (TBS). Application of the type 2 purinergic receptor antagonist suramin prevented depression of basal synaptic transmission, and switched the ChR2-dependent depression into potentiation. The GABAB receptor antagonist, phaclofen, did not prevent the depression of basal fEPSPs, but switched the ChR2-dependent depression into potentiation comparable to the values for TBS in control slices. In contrast, light stimulation of Opto-a1AR expressed in astrocytes led to an increase in basal fEPSPs, as well as a potentiation of synaptic responses to TBS significantly. A specific blocker of the Gq protein downstream target, the phospholipase C, U73122, completely prevented the effects of Opto-a1AR stimulation on basal fEPSPs or Opto + TBS responses. To understand molecular basis for the observed effects, we performed an analysis of gene expression in these slices using quantitative PCR approach. We observed a significant upregulation of "immediate-early" gene expression in hippocampal slices after light activation of Opto-a1AR-expressing astrocytes alone (cRel, Arc, Fos, JunB, and Egr1) or paired with TBS (cRel, Fos, and Egr1). Activation of ChR2-expressing hippocampal astrocytes was insufficient to affect expression of these genes in our experimental conditions. Thus, we concluded that optostimulation of astrocytes with ChR2 and Opto-a1AR optogenetic tools enables bidirectional modulation of synaptic plasticity and gene expression in hippocampus.


Subject(s)
Astrocytes , Long-Term Potentiation , Long-Term Potentiation/physiology , Neuronal Plasticity , Hippocampus/physiology , Synaptic Transmission , Electric Stimulation
8.
Biochem Biophys Res Commun ; 646: 63-69, 2023 02 26.
Article in English | MEDLINE | ID: mdl-36706707

ABSTRACT

Synaptic plasticity is currently considered the main mechanism underlying the plastic modification of neural networks. The vast majority of studies of synaptic plasticity are carried out on reduced preparations, but the situation in vivo is fundamentally different from that in vitro. In this work, we used the Hebbian paradigm, which is known to induce long-term changes in synaptic strength in vitro, to manipulate the properties of a single pyramidal neuron in the mouse visual cortex. We have shown that optogenetic stimulation of a ChR2-expressing pyramidal neuron in the primary visual cortex of Thy-ChR2 mice paired with the presentation of a visual stimulus of non-optimal orientation induces long-term changes in the properties of the receptive field, manifested in alteration of the orientation selectivity of the cell. Non-paired stimulation did not lead to changes in the properties of the receptive field of the neuron during the experiment. Thus, we have demonstrated the role of associative plasticity in the dynamic organization of the receptive fields of neurons in the visual cortex.


Subject(s)
Optogenetics , Visual Cortex , Mice , Animals , Photic Stimulation , Neuronal Plasticity/physiology , Neurons/physiology
9.
Proc Natl Acad Sci U S A ; 117(44): 27300-27306, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33087570

ABSTRACT

Conventional "bulk" PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.


Subject(s)
Emulsions/chemistry , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , DNA/genetics , DNA Primers/genetics , Gene Library , Genome/genetics , Humans , Models, Theoretical , Nucleic Acid Amplification Techniques/methods , Templates, Genetic
10.
Proc Natl Acad Sci U S A ; 117(37): 22841-22848, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32859757

ABSTRACT

Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.

11.
Int J Mol Sci ; 25(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203702

ABSTRACT

Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.


Subject(s)
Anti-Bacterial Agents , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Fruit , Genome, Bacterial , Genomics
12.
Proc Natl Acad Sci U S A ; 116(6): 2039-2041, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30670653

ABSTRACT

Gender inequality starts early in life. Parents tend to prefer boys over girls, which is manifested in reproductive behavior, marital life, and parents' pastimes and investments in their children. While social media and sharing information about children (so-called "sharenting") have become an integral part of parenthood, whether and how gender preference shapes the online behavior of users are not well known. In this paper we use public posts made by 635,665 users from Saint Petersburg on a popular Russian social networking site, to investigate public mentions of daughters and sons on social media. We find that both men and women mention sons more often than daughters in their posts. We also find that posts featuring sons receive more "likes" on average. Our results indicate that girls are underrepresented in parents' digital narratives about their children, in a country with an above-average ranking on gender parity. This gender imbalance may send a message that girls are less important than boys or that they deserve less attention, thus reinforcing gender inequality from an early age.


Subject(s)
Gender Identity , Nuclear Family , Parents/psychology , Social Media , Socioeconomic Factors , Data Collection , Family Characteristics , Female , Humans , Male , Russia , Sex Factors , Sexual Behavior , Social Behavior
13.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232729

ABSTRACT

ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.


Subject(s)
Protease La , ATP-Dependent Proteases/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Peptide Hydrolases/metabolism , Protease La/genetics , Protease La/metabolism , Proteome/metabolism
14.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163108

ABSTRACT

The biodiversity of microorganisms is maintained by intricate nets of interactions between competing species. Impaired functionality of human microbiomes correlates with their reduced biodiversity originating from aseptic environmental conditions and antibiotic use. Microbiomes of wild animals are free of these selective pressures. Microbiota provides a protecting shield from invasion by pathogens in the wild, outcompeting their growth in specific ecological niches. We applied ultrahigh-throughput microfluidic technologies for functional profiling of microbiomes of wild animals, including the skin beetle, Siberian lynx, common raccoon dog, and East Siberian brown bear. Single-cell screening of the most efficient killers of the common human pathogen Staphylococcus aureus resulted in repeated isolation of Bacillus pumilus strains. While isolated strains had different phenotypes, all of them displayed a similar set of biosynthetic gene clusters (BGCs) encoding antibiotic amicoumacin, siderophore bacillibactin, and putative analogs of antimicrobials including bacilysin, surfactin, desferrioxamine, and class IId cyclical bacteriocin. Amicoumacin A (Ami) was identified as a major antibacterial metabolite of these strains mediating their antagonistic activity. Genome mining indicates that Ami BGCs with this architecture subdivide into three distinct families, characteristic of the B. pumilus, B. subtilis, and Paenibacillus species. While Ami itself displays mediocre activity against the majority of Gram-negative bacteria, isolated B. pumilus strains efficiently inhibit the growth of both Gram-positive S. aureus and Gram-negative E. coli in coculture. We believe that the expanded antagonistic activity spectrum of Ami-producing B. pumilus can be attributed to the metabolomic profile predetermined by their biosynthetic fingerprint. Ultrahigh-throughput isolation of natural probiotic strains from wild animal microbiomes, as well as their metabolic reprogramming, opens up a new avenue for pathogen control and microbiome remodeling in the food industry, agriculture, and healthcare.


Subject(s)
Animals, Wild/microbiology , Anti-Bacterial Agents/administration & dosage , Bacillus pumilus/chemistry , Escherichia coli/growth & development , Microbiota , Probiotics/administration & dosage , Staphylococcus aureus/growth & development , Animals , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/drug effects , Genome, Bacterial , Metabolome , Multigene Family , Probiotics/isolation & purification , Staphylococcus aureus/drug effects
15.
Blood ; 134(15): 1227-1237, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31350265

ABSTRACT

Children with Down syndrome (DS) have a 20-fold increased risk of acute lymphoblastic leukemia (ALL) and distinct somatic features, including CRLF2 rearrangement in ∼50% of cases; however, the role of inherited genetic variation in DS-ALL susceptibility is unknown. We report the first genome-wide association study of DS-ALL, comprising a meta-analysis of 4 independent studies, with 542 DS-ALL cases and 1192 DS controls. We identified 4 susceptibility loci at genome-wide significance: rs58923657 near IKZF1 (odds ratio [OR], 2.02; Pmeta = 5.32 × 10-15), rs3731249 in CDKN2A (OR, 3.63; Pmeta = 3.91 × 10-10), rs7090445 in ARID5B (OR, 1.60; Pmeta = 8.44 × 10-9), and rs3781093 in GATA3 (OR, 1.73; Pmeta = 2.89 × 10-8). We performed DS-ALL vs non-DS ALL case-case analyses, comparing risk allele frequencies at these and other established susceptibility loci (BMI1, PIP4K2A, and CEBPE) and found significant association with DS status for CDKN2A (OR, 1.58; Pmeta = 4.1 × 10-4). This association was maintained in separate regression models, both adjusting for and stratifying on CRLF2 overexpression and other molecular subgroups, indicating an increased penetrance of CDKN2A risk alleles in children with DS. Finally, we investigated functional significance of the IKZF1 risk locus, and demonstrated mapping to a B-cell super-enhancer, and risk allele association with decreased enhancer activity and differential protein binding. IKZF1 knockdown resulted in significantly higher proliferation in DS than non-DS lymphoblastoid cell lines. Our findings demonstrate a higher penetrance of the CDKN2A risk locus in DS and serve as a basis for further biological insights into DS-ALL etiology.


Subject(s)
Down Syndrome/genetics , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA-Binding Proteins/genetics , Down Syndrome/complications , GATA3 Transcription Factor/genetics , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Ikaros Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Transcription Factors/genetics
16.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30181282

ABSTRACT

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coumarins/pharmacology , Gastrointestinal Microbiome/drug effects , High-Throughput Screening Assays/methods , Metabolomics/methods , Animals , Anti-Bacterial Agents/metabolism , Bacillus pumilus/drug effects , Bacillus pumilus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coumarins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Drug Resistance, Bacterial/physiology , Gastrointestinal Microbiome/physiology , Gene Expression Profiling , Healthy Volunteers , Humans , Lab-On-A-Chip Devices , Proteomics/methods , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Single-Cell Analysis/methods , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Ursidae/microbiology
17.
Proc Natl Acad Sci U S A ; 115(50): 12728-12732, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478037

ABSTRACT

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.


Subject(s)
Fungi/genetics , Luminescent Proteins/genetics , Amino Acid Sequence , Animals , Biosynthetic Pathways/genetics , Caffeic Acids , Cell Line , Cell Line, Tumor , Female , Gene Duplication/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Sequence Alignment , Xenopus laevis
18.
Biochem Biophys Res Commun ; 532(1): 120-126, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32828537

ABSTRACT

Placozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5-7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched metazoan lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals.


Subject(s)
Placozoa/metabolism , Sodium Channels/metabolism , Sodium/metabolism , Action Potentials , Amino Acid Motifs , Amino Acid Sequence , Animals , Evolution, Molecular , Genetic Variation , Models, Molecular , Phylogeny , Placozoa/classification , Placozoa/genetics , Protein Conformation , Sodium Channels/chemistry , Sodium Channels/genetics
19.
Small ; 16(46): e2004831, 2020 11.
Article in English | MEDLINE | ID: mdl-33079456

ABSTRACT

Natural glycoconjugates that form glycocalyx play important roles in various biological processes based on cell surface recognition through pattern recognition mechanisms. This work represents a new synthesis-based screening strategy to efficiently target the cancer cells by higher-order glycan pattern recognition in both cells and intact animals (mice). The use of the very fast, selective, and effective RIKEN click reaction (6π-azaelectrocyclization of unsaturated imines) allows to synthesize and screen various structurally well-defined glycoalbumins containing two and eventually four different N-glycan structures in a very short time. The importance of glycan pattern recognition is exemplified in both cell- and mouse-based experiments. The use of pattern recognition mechanisms for cell targeting represents a novel and promising strategy for the development of diagnostic, prophylactic, and therapeutic agents for various diseases including cancers.


Subject(s)
Neoplasms , Polysaccharides , Animals , Glycation End Products, Advanced , Glycoconjugates , Mice , Serum Albumin , Glycated Serum Albumin
20.
FASEB J ; 33(6): 6852-6866, 2019 06.
Article in English | MEDLINE | ID: mdl-30811957

ABSTRACT

A majority of thousands of intracellular mammalian proteins are recognized by proteasome only being conjugated with ubiquitin (Ub), representing a universal degradation signal operated by the ubiquitination system. Ub-independent proteasome targeting is rationalized by the existence of 2 types of direct proteasome signals (DPSs), specific amino acid sequences or post-translational modifications, which are recognized by proteasome regulatory subunits. Historically, the first type was shown to exist in ornithine decarboxylase, whereas acetylation of core histones recently was reported as a second type of DPS. Here we declare a third type, representing charge-mediated DPS. This discovered DPS may be classified as a monopartite composition- but not sequence-dependent element of ∼70 Å in length enriched in basic and flexible amino acids. This type of degradation signal, which may be provided by cationic chemicals, is most efficiently engaged by proteasomes capped with regulator (REG)α or REGγ in an ATP-independent manner. Taken together, our findings suggest a novel modality of proteasome-substrate interrelation bypassing ubiquitination.-Kudriaeva, A., Kuzina, E. S., Zubenko, O., Smirnov, I. V., Belogurov, A. Charge-mediated proteasome targeting.


Subject(s)
Autoantigens/metabolism , Cations/metabolism , Myelin Basic Protein/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Cations/chemistry , HEK293 Cells , Humans , Liver/enzymology , Mice, Inbred BALB C , Myelin Basic Protein/chemistry , Protein Processing, Post-Translational , Proteolysis , Substrate Specificity , Ubiquitin/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL