Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Publication year range
1.
Nature ; 590(7845): 290-299, 2021 02.
Article in English | MEDLINE | ID: mdl-33568819

ABSTRACT

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Genomics , National Heart, Lung, and Blood Institute (U.S.) , Precision Medicine , Cytochrome P-450 CYP2D6/genetics , Haplotypes/genetics , Heterozygote , Humans , INDEL Mutation , Loss of Function Mutation , Mutagenesis , Phenotype , Polymorphism, Single Nucleotide , Population Density , Precision Medicine/standards , Quality Control , Sample Size , United States , Whole Genome Sequencing/standards
2.
Nucleic Acids Res ; 52(W1): W70-W77, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38709879

ABSTRACT

Polygenic scores (PGS) enable the prediction of genetic predisposition for a wide range of traits and diseases by calculating the weighted sum of allele dosages for genetic variants associated with the trait or disease in question. Present approaches for calculating PGS from genotypes are often inefficient and labor-intensive, limiting transferability into clinical applications. Here, we present 'Imputation Server PGS', an extension of the Michigan Imputation Server designed to automate a standardized calculation of polygenic scores based on imputed genotypes. This extends the widely used Michigan Imputation Server with new functionality, bringing the simplicity and efficiency of modern imputation to the PGS field. The service currently supports over 4489 published polygenic scores from publicly available repositories and provides extensive quality control, including ancestry estimation to report population stratification. An interactive report empowers users to screen and compare thousands of scores in a fast and intuitive way. Imputation Server PGS provides a user-friendly web service, facilitating the application of polygenic scores to a wide range of genetic studies and is freely available at https://imputationserver.sph.umich.edu.


Subject(s)
Genetic Predisposition to Disease , Multifactorial Inheritance , Software , Multifactorial Inheritance/genetics , Humans , Internet , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Genotype , Alleles , Genetic Risk Score
3.
Genet Epidemiol ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385445

ABSTRACT

Persistent opioid use after surgery is a common morbidity outcome associated with subsequent opioid use disorder, overdose, and death. While phenotypic associations have been described, genetic associations remain unidentified. Here, we conducted the largest genetic study of persistent opioid use after surgery, comprising ~40,000 non-Hispanic, European-ancestry Michigan Genomics Initiative participants (3198 cases and 36,321 surgically exposed controls). Our study primarily focused on the reproducibility and reliability of 72 genetic studies of opioid use disorder phenotypes. Nominal associations (p < 0.05) occurred at 12 of 80 unique (r2 < 0.8) signals from these studies. Six occurred in OPRM1 (most significant: rs79704991-T, OR = 1.17, p = 8.7 × 10-5), with two surviving multiple testing correction. Other associations were rs640561-LRRIQ3 (p = 0.015), rs4680-COMT (p = 0.016), rs9478495 (p = 0.017, intergenic), rs10886472-GRK5 (p = 0.028), rs9291211-SLC30A9/BEND4 (p = 0.043), and rs112068658-KCNN1 (p = 0.048). Two highly referenced genes, OPRD1 and DRD2/ANKK1, had no signals in MGI. Associations at previously identified OPRM1 variants suggest common biology between persistent opioid use and opioid use disorder, further demonstrating connections between opioid dependence and addiction phenotypes. Lack of significant associations at other variants challenges previous studies' reliability.

4.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36255742

ABSTRACT

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Subject(s)
Asthma , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Asthma/genetics , Genetic Loci , Whole Genome Sequencing , Polymorphism, Single Nucleotide/genetics , Fibroblast Growth Factors/genetics
5.
Am J Hum Genet ; 109(9): 1653-1666, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35981533

ABSTRACT

Understanding the genetic basis of human diseases and traits is dependent on the identification and accurate genotyping of genetic variants. Deep whole-genome sequencing (WGS), the gold standard technology for SNP and indel identification and genotyping, remains very expensive for most large studies. Here, we quantify the extent to which array genotyping followed by genotype imputation can approximate WGS in studies of individuals of African, Hispanic/Latino, and European ancestry in the US and of Finnish ancestry in Finland (a population isolate). For each study, we performed genotype imputation by using the genetic variants present on the Illumina Core, OmniExpress, MEGA, and Omni 2.5M arrays with the 1000G, HRC, and TOPMed imputation reference panels. Using the Omni 2.5M array and the TOPMed panel, ≥90% of bi-allelic single-nucleotide variants (SNVs) are well imputed (r2 > 0.8) down to minor-allele frequencies (MAFs) of 0.14% in African, 0.11% in Hispanic/Latino, 0.35% in European, and 0.85% in Finnish ancestries. There was little difference in TOPMed-based imputation quality among the arrays with >700k variants. Individual-level imputation quality varied widely between and within the three US studies. Imputation quality also varied across genomic regions, producing regions where even common (MAF > 5%) variants were consistently not well imputed across ancestries. The extent to which array genotyping and imputation can approximate WGS therefore depends on reference panel, genotype array, sample ancestry, and genomic location. Imputation quality by variant or genomic region can be queried with our new tool, RsqBrowser, now deployed on the Michigan Imputation Server.


Subject(s)
High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Gene Frequency/genetics , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing
6.
Am J Hum Genet ; 109(6): 1175-1181, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35504290

ABSTRACT

Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.


Subject(s)
Genome-Wide Association Study , Precision Medicine , Asian People , Humans , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing
7.
Am J Hum Genet ; 108(5): 874-893, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33887194

ABSTRACT

Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.


Subject(s)
Erythrocytes/metabolism , Erythrocytes/pathology , Genome-Wide Association Study , National Heart, Lung, and Blood Institute (U.S.)/organization & administration , Phenotype , Adult , Aged , Chromosomes, Human, Pair 16/genetics , Datasets as Topic , Female , Gene Editing , Genetic Variation/genetics , HEK293 Cells , Humans , Male , Middle Aged , Quality Control , Reproducibility of Results , United States
8.
Am J Hum Genet ; 108(10): 1836-1851, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34582791

ABSTRACT

Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.


Subject(s)
Asthma/epidemiology , Biomarkers/metabolism , Dermatitis, Atopic/epidemiology , Leukocytes/pathology , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/epidemiology , Quantitative Trait Loci , Asthma/genetics , Asthma/metabolism , Asthma/pathology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study , Humans , National Heart, Lung, and Blood Institute (U.S.) , Phenotype , Prognosis , Proteome/analysis , Proteome/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , United Kingdom/epidemiology , United States/epidemiology , Whole Genome Sequencing
9.
Hum Mol Genet ; 30(15): 1443-1456, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33856023

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.


Subject(s)
Apolipoproteins E/genetics , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , Alanine Transaminase , Alleles , Alzheimer Disease/genetics , Apolipoproteins E/metabolism , Databases, Genetic , Exome/genetics , Gene Frequency/genetics , Genome-Wide Association Study/methods , Humans , Liver , Liver Cirrhosis/genetics , Myocardial Infarction/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Prognosis , Risk Factors , Triglycerides
10.
Anesthesiology ; 139(6): 827-839, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37774411

ABSTRACT

BACKGROUND: Postsurgical pain is a key component of surgical recovery. However, the genetic drivers of postsurgical pain remain unclear. A broad review and meta-analyses of variants of interest will help investigators understand the potential effects of genetic variation. METHODS: This article is a systematic review of genetic variants associated with postsurgical pain in humans, assessing association with postsurgical pain scores and opioid use in both acute (0 to 48 h postoperatively) and chronic (at least 3 months postoperatively) settings. PubMed, Embase, and the Cochrane Central Register of Controlled Trials were searched from 2000 to 2022 for studies using search terms related to genetic variants and postsurgical pain in humans. English-language studies in adult patients examining associations of one or more genetic variants with postsurgical pain were included. The primary outcome was association of genetic variants with either acute or chronic postsurgical pain. Pain was measured by patient-reported pain score or analgesic or opioid consumption. RESULTS: A total of 163 studies were included, evaluating 129 unique genes and 594 unique genetic variants. Many of the reported significant associations fail to be replicated in other studies. Meta-analyses were performed for seven variants for which there was sufficient data (OPRM1 rs1799971; COMT rs4680, rs4818, rs4633, and rs6269; and ABCB1 rs1045642 and rs2032582). Only two variants were associated with small differences in postsurgical pain: OPRM1 rs1799971 (for acute postsurgical opioid use standard mean difference = 0.25; 95% CI, 0.16 to 0.35; cohort size, 8,227; acute postsurgical pain score standard mean difference = 0.20; 95% CI, 0.09 to 0.31; cohort size, 4,619) and COMT rs4680 (chronic postsurgical pain score standard mean difference = 0.26; 95% CI, 0.08 to 0.44; cohort size, 1,726). CONCLUSIONS: Despite much published data, only two alleles have a small association with postsurgical pain. Small sample sizes, potential confounding variables, and inconsistent findings underscore the need to examine larger cohorts with consistent outcome measures.


Subject(s)
Analgesics, Opioid , Polymorphism, Single Nucleotide , Adult , Humans , Pain, Postoperative/genetics , Analgesics
11.
Bioinformatics ; 37(22): 4248-4250, 2021 11 18.
Article in English | MEDLINE | ID: mdl-33989384

ABSTRACT

SUMMARY: The sparse allele vectors file format is an efficient storage format for large-scale DNA variation data and is designed for high throughput association analysis by leveraging techniques for fast deserialization of data into computer memory. A command line interface has been developed to complement the storage format and supports basic features like importing, exporting and subsetting. Additionally, a C++ programming API is available allowing for easy integration into analysis software. AVAILABILITY AND IMPLEMENTATION: https://github.com/statgen/savvy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Alleles
12.
Mol Psychiatry ; 26(6): 2111-2125, 2021 06.
Article in English | MEDLINE | ID: mdl-32372009

ABSTRACT

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.


Subject(s)
Genome-Wide Association Study , Hypertension , Blood Pressure/genetics , Epistasis, Genetic , Genetic Loci , Humans , Hypertension/genetics , Polymorphism, Single Nucleotide
13.
Am J Hum Genet ; 103(5): 691-706, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388399

ABSTRACT

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.


Subject(s)
Genetic Loci/genetics , Inflammation/genetics , Metabolic Networks and Pathways/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Body Mass Index , C-Reactive Protein/genetics , Child , Female , Genome-Wide Association Study/methods , Humans , Inflammation/metabolism , Liver/metabolism , Liver/pathology , Male , Mendelian Randomization Analysis/methods , Middle Aged , Schizophrenia/genetics , Schizophrenia/metabolism , Young Adult
14.
Nature ; 523(7561): 459-462, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26131930

ABSTRACT

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


Subject(s)
Body Height/genetics , Cognition , Homozygote , Biological Evolution , Blood Pressure/genetics , Cholesterol, LDL/genetics , Cohort Studies , Educational Status , Female , Forced Expiratory Volume/genetics , Genome, Human/genetics , Humans , Lung Volume Measurements , Male , Phenotype
15.
Circulation ; 139(5): 620-635, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30586737

ABSTRACT

BACKGROUND: Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are associated with risk of arterial and venous thrombosis and with hemorrhagic disorders. We aimed to identify and functionally test novel genetic associations regulating plasma FVIII and VWF. METHODS: We meta-analyzed genome-wide association results from 46 354 individuals of European, African, East Asian, and Hispanic ancestry. All studies performed linear regression analysis using an additive genetic model and associated ≈35 million imputed variants with natural log-transformed phenotype levels. In vitro gene silencing in cultured endothelial cells was performed for candidate genes to provide additional evidence on association and function. Two-sample Mendelian randomization analyses were applied to test the causal role of FVIII and VWF plasma levels on the risk of arterial and venous thrombotic events. RESULTS: We identified 13 novel genome-wide significant ( P≤2.5×10-8) associations, 7 with FVIII levels ( FCHO2/TMEM171/TNPO1, HLA, SOX17/RP1, LINC00583/NFIB, RAB5C-KAT2A, RPL3/TAB1/SYNGR1, and ARSA) and 11 with VWF levels ( PDHB/PXK/KCTD6, SLC39A8, FCHO2/TMEM171/TNPO1, HLA, GIMAP7/GIMAP4, OR13C5/NIPSNAP, DAB2IP, C2CD4B, RAB5C-KAT2A, TAB1/SYNGR1, and ARSA), beyond 10 previously reported associations with these phenotypes. Functional validation provided further evidence of association for all loci on VWF except ARSA and DAB2IP. Mendelian randomization suggested causal effects of plasma FVIII activity levels on venous thrombosis and coronary artery disease risk and plasma VWF levels on ischemic stroke risk. CONCLUSIONS: The meta-analysis identified 13 novel genetic loci regulating FVIII and VWF plasma levels, 10 of which we validated functionally. We provide some evidence for a causal role of these proteins in thrombotic events.


Subject(s)
Arterial Occlusive Diseases/genetics , Blood Coagulation Disorders, Inherited/genetics , Blood Coagulation/genetics , Factor VIII/analysis , Genetic Loci , Venous Thrombosis/genetics , von Willebrand Factor/analysis , Arterial Occlusive Diseases/blood , Arterial Occlusive Diseases/ethnology , Biomarkers/blood , Blood Coagulation Disorders, Inherited/blood , Blood Coagulation Disorders, Inherited/ethnology , Genetic Markers , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Phenotype , Ribosomal Protein L3 , Risk Factors , Venous Thrombosis/blood , Venous Thrombosis/ethnology
16.
Stroke ; 51(7): 2111-2121, 2020 07.
Article in English | MEDLINE | ID: mdl-32517579

ABSTRACT

BACKGROUND AND PURPOSE: Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings. METHODS: Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC. RESULTS: In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (NBEAL), 10q23.1 (TSPAN14/FAM231A), and 10q24.33 (SH3PXD2A). In the much larger combined meta-analysis of all cohorts, we identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci of interest include 7q36.1 (NOS3) and 16q24.2. In both the discovery/replication and combined analysis, we found genome-wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 19 genes across all regions were identified for PVWMH only, including the new genes: CALCRL (2q32.1), KLHL24 (3q27.1), VCAN (5q27.1), and POLR2F (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations with dementia for either phenotype. CONCLUSIONS: Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new candidate genes associated with PVWMH only.


Subject(s)
Brain/pathology , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/pathology , Genetic Predisposition to Disease/genetics , White Matter/pathology , Aged , Brain/diagnostic imaging , Cerebral Small Vessel Diseases/diagnostic imaging , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , White Matter/diagnostic imaging
17.
Am J Hum Genet ; 100(1): 51-63, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-28017375

ABSTRACT

Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluate loss of function, we observed a strong in vivo erythropoietic effect for RBPMS but not for GTF2E2, supporting the statistical fine-mapping at this locus and demonstrating that RBPMS is a regulator of erythropoiesis. Our findings show the utility of trans-ethnic GWASs for discovery and characterization of genetic loci influencing hematologic traits.


Subject(s)
Erythrocytes/metabolism , Erythropoiesis/genetics , RNA-Binding Proteins/genetics , Racial Groups/genetics , Africa/ethnology , Alleles , Animals , Bayes Theorem , Ethnicity/genetics , Europe/ethnology , Asia, Eastern/ethnology , Female , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Zebrafish/genetics
18.
Nature ; 514(7520): 92-97, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25231870

ABSTRACT

Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.


Subject(s)
Alleles , Genetic Loci/genetics , Menarche/genetics , Parents , Adolescent , Age Factors , Body Mass Index , Breast Neoplasms/genetics , Calcium-Binding Proteins , Cardiovascular Diseases/genetics , Child , Diabetes Mellitus, Type 2/genetics , Europe/ethnology , Female , Genome-Wide Association Study , Genomic Imprinting/genetics , Humans , Hypothalamo-Hypophyseal System/physiology , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Obesity/genetics , Ovary/physiology , Polymorphism, Single Nucleotide/genetics , Potassium Channels, Tandem Pore Domain/genetics , Proteins/genetics , Quantitative Trait Loci/genetics , Receptors, GABA-B/metabolism , Receptors, Retinoic Acid/metabolism , Ribonucleoproteins/genetics , Ubiquitin-Protein Ligases
19.
Am J Respir Crit Care Med ; 199(5): 631-642, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30199657

ABSTRACT

RATIONALE: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. OBJECTIVE: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. METHODS: Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N = 11,962) and replicated in one cohort (N = 1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNP associations and their interactions with n-3 PUFAs. RESULTS: DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P2df = 9.4 × 10-9 across discovery and replication cohorts). The rs11693320-A allele (frequency, ∼80%) was associated with lower FVC (PSNP = 2.1 × 10-9; ßSNP = -161.0 ml), and the association was attenuated by higher DHA levels (PSNP×DHA interaction = 2.1 × 10-7; ßSNP×DHA interaction = 36.2 ml). CONCLUSIONS: We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/physiology , Fatty Acids, Omega-3/blood , Respiratory Physiological Phenomena/genetics , Aged , Biomarkers/blood , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Unsaturated/blood , Female , Forced Expiratory Volume/genetics , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Sex Factors , Smoking/adverse effects , Vital Capacity/genetics , alpha-Linolenic Acid/blood
20.
Am J Epidemiol ; 188(6): 1033-1054, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30698716

ABSTRACT

A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.


Subject(s)
Alcohol Drinking/epidemiology , Lipids/blood , Adolescent , Adult , Aged , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Genome-Wide Association Study , Genotype , Humans , Life Style , Male , Middle Aged , Phenotype , Racial Groups , Triglycerides/blood , Vascular Endothelial Growth Factor B , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL