Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.134
Filter
Add more filters

Publication year range
1.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38714197

ABSTRACT

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Mesenchymal Stem Cells , Proteomics , Single-Cell Analysis , Transcriptome , Humans , Single-Cell Analysis/methods , Bone Marrow/metabolism , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Proteomics/methods , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Hematopoiesis , Stem Cell Niche , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology
2.
Cell ; 161(5): 1215-1228, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26000489

ABSTRACT

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, ß-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Subject(s)
Gene Expression Profiling/methods , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Cohort Studies , Humans , Male , Mutation , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy
3.
Nature ; 618(7963): 159-168, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225977

ABSTRACT

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Subject(s)
Nerve Regeneration , Humans , Neoplasms/drug therapy , Nerve Regeneration/drug effects , Protein Isoforms/agonists , Signal Transduction/drug effects , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/drug effects , Cardiotonic Agents/pharmacology , Animals , Biocatalysis/drug effects , Protein Conformation/drug effects , Neurites/drug effects , Reperfusion Injury/prevention & control , Nerve Crush , Cell Proliferation/drug effects
4.
Nature ; 610(7933): 687-692, 2022 10.
Article in English | MEDLINE | ID: mdl-36049503

ABSTRACT

The social cost of carbon dioxide (SC-CO2) measures the monetized value of the damages to society caused by an incremental metric tonne of CO2 emissions and is a key metric informing climate policy. Used by governments and other decision-makers in benefit-cost analysis for over a decade, SC-CO2 estimates draw on climate science, economics, demography and other disciplines. However, a 2017 report by the US National Academies of Sciences, Engineering, and Medicine1 (NASEM) highlighted that current SC-CO2 estimates no longer reflect the latest research. The report provided a series of recommendations for improving the scientific basis, transparency and uncertainty characterization of SC-CO2 estimates. Here we show that improved probabilistic socioeconomic projections, climate models, damage functions, and discounting methods that collectively reflect theoretically consistent valuation of risk, substantially increase estimates of the SC-CO2. Our preferred mean SC-CO2 estimate is $185 per tonne of CO2 ($44-$413 per tCO2: 5%-95% range, 2020 US dollars) at a near-term risk-free discount rate of 2%, a value 3.6 times higher than the US government's current value of $51 per tCO2. Our estimates incorporate updated scientific understanding throughout all components of SC-CO2 estimation in the new open-source Greenhouse Gas Impact Value Estimator (GIVE) model, in a manner fully responsive to the near-term NASEM recommendations. Our higher SC-CO2 values, compared with estimates currently used in policy evaluation, substantially increase the estimated benefits of greenhouse gas mitigation and thereby increase the expected net benefits of more stringent climate policies.


Subject(s)
Carbon Dioxide , Climate Models , Socioeconomic Factors , Carbon Dioxide/analysis , Carbon Dioxide/economics , Climate , Greenhouse Gases/analysis , Greenhouse Gases/economics , Uncertainty , Delay Discounting , Risk , Policy Making , Environmental Policy
5.
Immunity ; 47(5): 875-889.e10, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29166588

ABSTRACT

Migration of activated regulatory T (Treg) cells to inflamed tissue is crucial for their immune-modulatory function. While metabolic reprogramming during Treg cell differentiation has been extensively studied, the bioenergetics of Treg cell trafficking remains undefined. We have investigated the metabolic demands of migrating Treg cells in vitro and in vivo. We show that glycolysis was instrumental for their migration and was initiated by pro-migratory stimuli via a PI3K-mTORC2-mediated pathway culminating in induction of the enzyme glucokinase (GCK). Subsequently, GCK promoted cytoskeletal rearrangements by associating with actin. Treg cells lacking this pathway were functionally suppressive but failed to migrate to skin allografts and inhibit rejection. Similarly, human carriers of a loss-of-function GCK regulatory protein gene-leading to increased GCK activity-had reduced numbers of circulating Treg cells. These cells displayed enhanced migratory activity but similar suppressive function, while conventional T cells were unaffected. Thus, GCK-dependent glycolysis regulates Treg cell migration.


Subject(s)
Glucokinase/physiology , Glycolysis , T-Lymphocytes, Regulatory/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , CD28 Antigens/physiology , CTLA-4 Antigen/physiology , Cells, Cultured , Humans , Mechanistic Target of Rapamycin Complex 1/physiology , Mechanistic Target of Rapamycin Complex 2/physiology , Mice , Mice, Inbred Strains , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology
6.
PLoS Biol ; 21(5): e3002139, 2023 05.
Article in English | MEDLINE | ID: mdl-37252926

ABSTRACT

Intermittent hypoxia (IH) is a major clinical feature of obstructive sleep apnea (OSA). The mechanisms that become dysregulated after periods of exposure to IH are unclear, particularly in the early stages of disease. The circadian clock governs a wide array of biological functions and is intimately associated with stabilization of hypoxia-inducible factors (HIFs) under hypoxic conditions. In patients, IH occurs during the sleep phase of the 24-hour sleep-wake cycle, potentially affecting their circadian rhythms. Alterations in the circadian clock have the potential to accelerate pathological processes, including other comorbid conditions that can be associated with chronic, untreated OSA. We hypothesized that changes in the circadian clock would manifest differently in those organs and systems known to be impacted by OSA. Using an IH model to represent OSA, we evaluated circadian rhythmicity and mean 24-hour expression of the transcriptome in 6 different mouse tissues, including the liver, lung, kidney, muscle, heart, and cerebellum, after a 7-day exposure to IH. We found that transcriptomic changes within cardiopulmonary tissues were more affected by IH than other tissues. Also, IH exposure resulted in an overall increase in core body temperature. Our findings demonstrate a relationship between early exposure to IH and changes in specific physiological outcomes. This study provides insight into the early pathophysiological mechanisms associated with IH.


Subject(s)
Sleep Apnea, Obstructive , Transcriptome , Animals , Mice , Transcriptome/genetics , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/pathology , Circadian Rhythm/genetics , Disease Models, Animal , Hypoxia/metabolism
7.
Cell ; 145(3): 371-82, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21529711

ABSTRACT

The ubiquitin-proteasome system catalyzes the degradation of intracellular proteins. Although ubiquitination of proteins determines their stabilities, there is growing evidence that proteasome function is also regulated. We report the functional characterization of a conserved proteasomal regulatory complex. We identified DmPI31 as a binding partner of the F box protein Nutcracker, a component of an SCF ubiquitin ligase (E3) required for caspase activation during sperm differentiation in Drosophila. DmPI31 binds Nutcracker via a conserved mechanism that is also used by mammalian FBXO7 and PI31. Nutcracker promotes DmPI31 stability, which is necessary for caspase activation, proteasome function, and sperm differentiation. DmPI31 can activate 26S proteasomes in vitro, and increasing DmPI31 levels suppresses defects caused by diminished proteasome activity in vivo. Furthermore, loss of DmPI31 function causes lethality, cell-cycle abnormalities, and defects in protein degradation, demonstrating that DmPI31 is physiologically required for normal proteasome activity.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , F-Box Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Amino Acid Sequence , Animals , Carrier Proteins/genetics , Caspases/metabolism , Cell Line , Drosophila Proteins/analysis , Drosophila Proteins/genetics , Humans , Male , Mice , Molecular Sequence Data , Proteome/analysis , Sequence Alignment , Spermatogenesis , Testis/metabolism
8.
Cell ; 144(4): 526-38, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21335235

ABSTRACT

In the eukaryotic 26S proteasome, the 20S particle is regulated by six AAA ATPase subunits and, in archaea, by a homologous ring complex, PAN. To clarify the role of ATP in proteolysis, we studied how nucleotides bind to PAN. Although PAN has six identical subunits, it binds ATPs in pairs, and its subunits exhibit three conformational states with high, low, or no affinity for ATP. When PAN binds two ATPγS molecules or two ATPγS plus two ADP molecules, it is maximally active in binding protein substrates, associating with the 20S particle, and promoting 20S gate opening. However, binding of four ATPγS molecules reduces these functions. The 26S proteasome shows similar nucleotide dependence. These findings imply an ordered cyclical mechanism in which two ATPase subunits bind ATP simultaneously and dock into the 20S. These results can explain how these hexameric ATPases interact with and "wobble" on top of the heptameric 20S proteasome.


Subject(s)
Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Archaeal Proteins/metabolism , Adenosine Triphosphate/analogs & derivatives , Animals , Archaea , Nucleotides/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Rabbits , Thermoplasma/metabolism
9.
Plant Physiol ; 196(2): 1674-1690, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38713768

ABSTRACT

Synechococcus sp. PCC 11901 (PCC 11901) is a fast-growing marine cyanobacterial strain that has a capacity for sustained biomass accumulation to very high cell densities, comparable to that achieved by commercially relevant heterotrophic organisms. However, genetic tools to engineer PCC 11901 for biotechnology applications are limited. Here we describe a suite of tools based on the CyanoGate MoClo system to unlock the engineering potential of PCC 11901. First, we characterized neutral sites suitable for stable genomic integration that do not affect growth even at high cell densities. Second, we tested a suite of constitutive promoters, terminators, and inducible promoters including a 2,4-diacetylphloroglucinol (DAPG)-inducible PhlF repressor system, which has not previously been demonstrated in cyanobacteria and showed tight regulation and a 228-fold dynamic range of induction. Lastly, we developed a DAPG-inducible dCas9-based CRISPR interference (CRISPRi) system and a modular method to generate markerless mutants using CRISPR-Cas12a. Based on our findings, PCC 11901 is highly responsive to CRISPRi-based repression and showed high efficiencies for single insertion (31% to 81%) and multiplex double insertion (25%) genome editing with Cas12a. We envision that these tools will lay the foundations for the adoption of PCC 11901 as a robust model strain for engineering biology and green biotechnology.


Subject(s)
Synechococcus , Synechococcus/genetics , Synechococcus/growth & development , Promoter Regions, Genetic/genetics , CRISPR-Cas Systems , Genetic Engineering/methods , Gene Editing/methods
10.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Article in English | MEDLINE | ID: mdl-38709820

ABSTRACT

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Subject(s)
Mosquito Control , Animals , Mosquito Control/methods , Culicidae/genetics , Culicidae/physiology , Computational Biology/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Aedes/genetics , Insecticide Resistance/genetics , Female
11.
PLoS Comput Biol ; 20(2): e1011871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38330139

ABSTRACT

Massive sequencing of SARS-CoV-2 genomes has urged novel methods that employ existing phylogenies to add new samples efficiently instead of de novo inference. 'TIPars' was developed for such challenge integrating parsimony analysis with pre-computed ancestral sequences. It took about 21 seconds to insert 100 SARS-CoV-2 genomes into a 100k-taxa reference tree using 1.4 gigabytes. Benchmarking on four datasets, TIPars achieved the highest accuracy for phylogenies of moderately similar sequences. For highly similar and divergent scenarios, fully parsimony-based and likelihood-based phylogenetic placement methods performed the best respectively while TIPars was the second best. TIPars accomplished efficient and accurate expansion of phylogenies of both similar and divergent sequences, which would have broad biological applications beyond SARS-CoV-2. TIPars is accessible from https://tipars.hku.hk/ and source codes are available at https://github.com/id-bioinfo/TIPars.


Subject(s)
Genome , Software , Phylogeny , Likelihood Functions , SARS-CoV-2/genetics
12.
EMBO Rep ; 24(9): e57882, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37535578

ABSTRACT

Early adoption of coping strategies can help smooth the ups and downs of science and life.


Subject(s)
Adaptation, Psychological , Anxiety
13.
EMBO Rep ; 24(12): e58291, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37855093

ABSTRACT

Making the most of opportunities available during graduate school can pay dividends later on.

14.
EMBO Rep ; 24(6): e57262, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37042234

ABSTRACT

David reflects on how a cancer diagnosis and treatment reset your priorities in life.

16.
Nature ; 570(7760): 189-193, 2019 06.
Article in English | MEDLINE | ID: mdl-31092927

ABSTRACT

HIV/AIDS is a leading cause of disease burden in sub-Saharan Africa. Existing evidence has demonstrated that there is substantial local variation in the prevalence of HIV; however, subnational variation has not been investigated at a high spatial resolution across the continent. Here we explore within-country variation at a 5 × 5-km resolution in sub-Saharan Africa by estimating the prevalence of HIV among adults (aged 15-49 years) and the corresponding number of people living with HIV from 2000 to 2017. Our analysis reveals substantial within-country variation in the prevalence of HIV throughout sub-Saharan Africa and local differences in both the direction and rate of change in HIV prevalence between 2000 and 2017, highlighting the degree to which important local differences are masked when examining trends at the country level. These fine-scale estimates of HIV prevalence across space and time provide an important tool for precisely targeting the interventions that are necessary to bringing HIV infections under control in sub-Saharan Africa.


Subject(s)
Geographic Mapping , HIV Infections/epidemiology , Adolescent , Adult , Africa South of the Sahara/epidemiology , Female , HIV Infections/prevention & control , Humans , Male , Middle Aged , Prevalence , Public Health/statistics & numerical data , Public Health/trends , Young Adult
17.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38471765

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Subject(s)
CREB-Binding Protein , E1A-Associated p300 Protein , Rubinstein-Taybi Syndrome , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/therapy , Humans , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Consensus , Disease Management , Mutation
18.
Biochem J ; 481(5): 345-362, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38314646

ABSTRACT

Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.


Subject(s)
AMP-Activated Protein Kinases , Adipogenesis , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Leptin/genetics , Leptin/pharmacology , Leptin/metabolism
19.
Eur Heart J ; 45(23): 2052-2062, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38596853

ABSTRACT

BACKGROUND AND AIMS: Older patients with non-ST-elevation acute coronary syndrome (NSTEACS) are less likely to receive guideline-recommended care including coronary angiography and revascularization. Evidence-based recommendations regarding interventional management strategies in this patient cohort are scarce. This meta-analysis aimed to assess the impact of routine invasive vs. conservative management of NSTEACS by using individual patient data (IPD) from all available randomized controlled trials (RCTs) including older patients. METHODS: MEDLINE, Web of Science and Scopus were searched between 1 January 2010 and 11 September 2023. RCTs investigating routine invasive and conservative strategies in persons >70 years old with NSTEACS were included. Observational studies or trials involving populations outside the target range were excluded. The primary endpoint was a composite of all-cause mortality and myocardial infarction (MI) at 1 year. One-stage IPD meta-analyses were adopted by use of random-effects and fixed-effect Cox models. This meta-analysis is registered with PROSPERO (CRD42023379819). RESULTS: Six eligible studies were identified including 1479 participants. The primary endpoint occurred in 181 of 736 (24.5%) participants in the invasive management group compared with 215 of 743 (28.9%) participants in the conservative management group with a hazard ratio (HR) from random-effects model of 0.87 (95% CI 0.63-1.22; P = .43). The hazard for MI at 1 year was significantly lower in the invasive group compared with the conservative group (HR from random-effects model 0.62, 95% CI 0.44-0.87; P = .006). Similar results were seen for urgent revascularization (HR from random-effects model 0.41, 95% CI 0.18-0.95; P = .037). There was no significant difference in mortality. CONCLUSIONS: No evidence was found that routine invasive treatment for NSTEACS in older patients reduces the risk of a composite of all-cause mortality and MI within 1 year compared with conservative management. However, there is convincing evidence that invasive treatment significantly lowers the risk of repeat MI or urgent revascularisation. Further evidence is needed from ongoing larger clinical trials.


Subject(s)
Acute Coronary Syndrome , Conservative Treatment , Percutaneous Coronary Intervention , Humans , Conservative Treatment/methods , Acute Coronary Syndrome/therapy , Acute Coronary Syndrome/mortality , Aged , Randomized Controlled Trials as Topic , Myocardial Revascularization/statistics & numerical data , Coronary Angiography , Non-ST Elevated Myocardial Infarction/therapy , Non-ST Elevated Myocardial Infarction/mortality , Female
20.
Eur Heart J ; 45(33): 3031-3041, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38747561

ABSTRACT

BACKGROUND AND AIMS: This trial sought to assess the safety and efficacy of ShortCut, the first dedicated leaflet modification device, prior to transcatheter aortic valve implantation (TAVI) in patients at risk for coronary artery obstruction. METHODS: This pivotal prospective study enrolled patients with failed bioprosthetic aortic valves scheduled to undergo TAVI and were at risk for coronary artery obstruction. The primary safety endpoint was procedure-related mortality or stroke at discharge or 7 days, and the primary efficacy endpoint was per-patient leaflet splitting success. Independent angiographic, echocardiographic, and computed tomography core laboratories assessed all images. Safety events were adjudicated by a clinical events committee and data safety monitoring board. RESULTS: Sixty eligible patients were treated (77.0 ± 9.6 years, 70% female, 96.7% failed surgical bioprosthetic valves, 63.3% single splitting and 36.7% dual splitting) at 22 clinical sites. Successful leaflet splitting was achieved in all [100%; 95% confidence interval (CI) 94%-100.0%, P < .001] patients. Procedure time, including imaging confirmation of leaflet splitting, was 30.6 ± 17.9 min. Freedom from the primary safety endpoint was achieved in 59 [98.3%; 95% CI (91.1%-100%)] patients, with no mortality and one (1.7%) disabling stroke. At 30 days, freedom from coronary obstruction was 95% (95% CI 86.1%-99.0%). Within 90 days, freedom from mortality was 95% [95% CI (86.1%-99.0%)], without any cardiovascular deaths. CONCLUSIONS: Modification of failed bioprosthetic aortic valve leaflets using ShortCut was safe, achieved successful leaflet splitting in all patients, and was associated with favourable clinical outcomes in patients at risk for coronary obstruction undergoing TAVI.


Subject(s)
Aortic Valve Stenosis , Bioprosthesis , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Female , Transcatheter Aortic Valve Replacement/methods , Transcatheter Aortic Valve Replacement/adverse effects , Male , Aged , Prospective Studies , Aortic Valve Stenosis/surgery , Prosthesis Failure , Prosthesis Design , Aged, 80 and over , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Treatment Outcome , Coronary Occlusion/surgery , Postoperative Complications/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL