Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Hum Mol Genet ; 23(11): 2995-3007, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24436303

ABSTRACT

Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for HD.


Subject(s)
Carbazoles/administration & dosage , Drosophila Proteins/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Huntington Disease/drug therapy , Huntington Disease/enzymology , Sirtuin 1/antagonists & inhibitors , Sirtuins/antagonists & inhibitors , Animals , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , PC12 Cells , Rats , Rats, Sprague-Dawley , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuins/genetics , Sirtuins/metabolism
2.
Methods Mol Biol ; 1780: 75-96, 2018.
Article in English | MEDLINE | ID: mdl-29856015

ABSTRACT

Flies, worms, yeast and more recently zebra fish have all been engineered to express expanded polyglutamine repeat versions of Huntingtin with various resulting pathologies including early death, neurodegeneration, and loss of motor function. Each of these models present particular features that make it useful in studying the mechanisms of polyglutamine pathology. However, one particular unbiased readout of mHTT pathology is functional loss of motor control. Loss of motor control is prominent in patients, but it remains unresolved whether pathogenic symptoms in patients result from overt degeneration and loss of neurons or from malfunctioning of surviving neurons as the pathogenic insult builds up. This is why a functional assay such as motor control can be uniquely powerful in revealing early as well as late neurological deficits and does not rely on assumptions such as that the level of inclusions or the degree of neuronal loss can be equated with the level of pathology. Drosophila is well suited for such assays because it contains a functioning nervous system with many parallels to the human condition. In addition, the ability to readily express mHTT transgenes in different tissues and subsets of neurons allows one the possibility of isolating a particular effect to a subset of neurons where one can correlate subcellular events in response to mHTT challenge with pathology at both the cellular and organismal levels. Here we describe methods to monitor the degree of motor function disruption in Drosophila models of HD and we include a brief summary of other nonmammalian models of HD and discussion of their unique strengths.


Subject(s)
Animals, Genetically Modified , Disease Models, Animal , Huntingtin Protein/metabolism , Huntington Disease/pathology , Neurons/pathology , Animals , Caenorhabditis elegans , Drosophila melanogaster , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Saccharomyces cerevisiae , Zebrafish
3.
Methods Mol Biol ; 1017: 41-57, 2013.
Article in English | MEDLINE | ID: mdl-23719906

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The HD gene encodes the huntingtin protein (HTT) that contains polyglutamine tracts of variable length. Expansions of the CAG repeat near the amino terminus to encode 40 or more glutamines (polyQ) lead to disease. At least eight other expanded polyQ diseases have been described. HD can be faithfully modeled in Drosophila with the key features of the disease such as late onset, slowly progressing degeneration, formation of abnormal protein aggregates and the dependence on polyQ length being evident. Such invertebrate model organisms provide powerful platforms to explore neurodegenerative mechanisms and to productively speed the identification of targets and agents that are likely to be effective at treating diseases in humans. Here we describe an optical pseudopupil method that can be readily quantified to provide a fast and sensitive assay for assessing the degree of HD neurodegeneration in vivo. We discuss detailed crossing schemes as well as factors including different drivers, various constructs, the number of UAS sites, genetic background, and temperature that can influence the result of pseudopupil measurements.


Subject(s)
Disease Models, Animal , Huntington Disease , Peptides , Animals , Crosses, Genetic , Drosophila melanogaster , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Peptides/genetics , Peptides/metabolism
4.
J Neurophysiol ; 87(4): 2031-42, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11929921

ABSTRACT

Behavioral reflexes can be modified by experience via mechanisms that are largely unknown. Within the circuitry for the vestibuloocular reflex (VOR), neurons in the medial vestibular nucleus (MVN) show adaptive changes in firing rate responses that are correlated with VOR gain (the ratio of evoked eye velocity to input head velocity). Although changes in synaptic strength are typically assumed to underlie gain changes in the VOR, modulation of intrinsic ion channels that dictate firing could also play a role. Little is known, however, about how ion channel function or regulation contributes to firing responses in MVN neurons. This study examined contributions of calcium-dependent currents to firing responses in MVN neurons recorded with whole cell patch electrodes in rodent brain stem slices. Firing responses were remarkably linear over a wide range of firing rates and showed modest spike frequency adaptation. Firing response gain, the ratio of evoked firing rate to input current, was reduced by increasing extracellular calcium and increased either by lowering extracellular calcium or with antagonists to SK- and BK-type calcium-dependent potassium channels and N- and T-type calcium channels. Blockade of SK channels occluded gain increases via N-type calcium channels, while blocking BK channels occluded gain increases via presumed T-type calcium channels, indicating specific coupling of potassium channels and their calcium sources. Selective inhibition of Ca(2+)/calmodulin-dependent kinase II and broad-spectrum inhibition of phosphatases modulated gain via BK-dependent pathways, indicating that firing responses are tightly regulated. Modulation of firing response gain by phosphorylation provides an attractive mechanism for adaptive control of VOR gain.


Subject(s)
Calcium/physiology , Neurons/physiology , Vestibular Nuclei/physiology , Amiloride/pharmacology , Animals , Calcium Channels/physiology , Calcium Channels, N-Type/physiology , Calcium Channels, T-Type/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/physiology , Electrophysiology , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels , Nickel/pharmacology , Phosphoric Monoester Hydrolases/physiology , Potassium Channels/physiology , Potassium Channels, Calcium-Activated/physiology , Rats , Rats, Long-Evans , Small-Conductance Calcium-Activated Potassium Channels , Vestibular Nuclei/cytology
SELECTION OF CITATIONS
SEARCH DETAIL