Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 165(5): 1267-1279, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27180905

ABSTRACT

RNA has the intrinsic property to base pair, forming complex structures fundamental to its diverse functions. Here, we develop PARIS, a method based on reversible psoralen crosslinking for global mapping of RNA duplexes with near base-pair resolution in living cells. PARIS analysis in three human and mouse cell types reveals frequent long-range structures, higher-order architectures, and RNA-RNA interactions in trans across the transcriptome. PARIS determines base-pairing interactions on an individual-molecule level, revealing pervasive alternative conformations. We used PARIS-determined helices to guide phylogenetic analysis of RNA structures and discovered conserved long-range and alternative structures. XIST, a long noncoding RNA (lncRNA) essential for X chromosome inactivation, folds into evolutionarily conserved RNA structural domains that span many kilobases. XIST A-repeat forms complex inter-repeat duplexes that nucleate higher-order assembly of the key epigenetic silencing protein SPEN. PARIS is a generally applicable and versatile method that provides novel insights into the RNA structurome and interactome. VIDEO ABSTRACT.


Subject(s)
Ficusin/chemistry , RNA, Double-Stranded/chemistry , Animals , Base Pairing , HEK293 Cells , HeLa Cells , Humans , Mice , Mouse Embryonic Stem Cells , RNA, Long Noncoding/chemistry
2.
Cell ; 146(4): 645-58, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21854988

ABSTRACT

The human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demonstrate wide variation in mitochondrial transcript abundance and precisely resolve transcript processing and maturation events. We identify previously undescribed transcripts, including small RNAs, and observe the enrichment of several nuclear RNAs in mitochondria. Using high-throughput in vivo DNaseI footprinting, we establish the global profile of DNA-binding protein occupancy across the mitochondrial genome at single-nucleotide resolution, revealing regulatory features at mitochondrial transcription initiation sites and functional insights into disease-associated variants. This integrated analysis of the mitochondrial transcriptome reveals unexpected complexity in the regulation, expression, and processing of mitochondrial RNA and provides a resource for future studies of mitochondrial function (accessed at http://mitochondria.matticklab.com).


Subject(s)
Gene Expression Profiling , Mitochondria/genetics , RNA/analysis , Cell Nucleus/metabolism , DNA Footprinting , DNA-Binding Proteins/analysis , Deoxyribonuclease I/metabolism , Gene Expression Regulation , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , Humans , Locus Control Region , Mitochondrial Proteins/analysis , Nucleic Acid Conformation , RNA/metabolism , RNA, Mitochondrial , Sequence Analysis, RNA
3.
J Virol ; 97(11): e0070523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37843370

ABSTRACT

IMPORTANCE: The lack of a reliable method to accurately detect when replication-competent HIV has been cleared is a major challenge in developing a cure. This study introduces a new approach called the HIVepsilon-seq (HIVε-seq) assay, which uses long-read sequencing technology and bioinformatics to scrutinize the HIV genome at the nucleotide level, distinguishing between defective and intact HIV. This study included 30 participants on antiretroviral therapy, including 17 women, and was able to discriminate between defective and genetically intact viruses at the single DNA strand level. The HIVε-seq assay is an improvement over previous methods, as it requires minimal sample, less specialized lab equipment, and offers a shorter turnaround time. The HIVε-seq assay offers a promising new tool for researchers to measure the intact HIV reservoir, advancing efforts towards finding a cure for this devastating disease.


Subject(s)
HIV Infections , HIV , Proviruses , Female , Humans , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/virology , Nucleotides , Proviruses/genetics , Viral Load , Sequence Analysis, DNA , Male , Sex Factors , HIV/genetics
4.
Genome Res ; 30(9): 1345-1353, 2020 09.
Article in English | MEDLINE | ID: mdl-32907883

ABSTRACT

Nanopore sequencing enables direct measurement of RNA molecules without conversion to cDNA, thus opening the gates to a new era for RNA biology. However, the lack of molecular barcoding of direct RNA nanopore sequencing data sets severely affects the applicability of this technology to biological samples, where RNA availability is often limited. Here, we provide the first experimental protocol and associated algorithm to barcode and demultiplex direct RNA nanopore sequencing data sets. Specifically, we present a novel and robust approach to accurately classify raw nanopore signal data by transforming current intensities into images or arrays of pixels, followed by classification using a deep learning algorithm. We demonstrate the power of this strategy by developing the first experimental protocol for barcoding and demultiplexing direct RNA sequencing libraries. Our method, DeePlexiCon, can classify 93% of reads with 95.1% accuracy or 60% of reads with 99.9% accuracy. The availability of an efficient and simple multiplexing strategy for native RNA sequencing will improve the cost-effectiveness of this technology, as well as facilitate the analysis of lower-input biological samples. Overall, our work exemplifies the power, simplicity, and robustness of signal-to-image conversion for nanopore data analysis using deep learning.


Subject(s)
Deep Learning , Nanopore Sequencing/methods , Sequence Analysis, RNA/methods , Algorithms
5.
Antimicrob Agents Chemother ; 66(7): e0019822, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35708323

ABSTRACT

In vitro selection of remdesivir-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed the emergence of a V166L substitution, located outside of the polymerase active site of the Nsp12 protein, after 9 passages of a single lineage. V166L remained the only Nsp12 substitution after 17 passages (10 µM remdesivir), conferring a 2.3-fold increase in 50% effective concentration (EC50). When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to remdesivir resistance.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Alanine/analogs & derivatives , Alanine/metabolism , Antiviral Agents/chemistry , Humans
6.
RNA ; 26(9): 1104-1117, 2020 09.
Article in English | MEDLINE | ID: mdl-32393525

ABSTRACT

Noncoding RNA has a proven ability to direct and regulate chromatin modifications by acting as scaffolds between DNA and histone-modifying complexes. However, it is unknown if ncRNA plays any role in DNA replication and epigenome maintenance, including histone eviction and reinstallment of histone modifications after genome duplication. Isolation of nascent chromatin has identified a large number of RNA-binding proteins in addition to unknown components of the replication and epigenetic maintenance machinery. Here, we isolated and characterized long and short RNAs associated with nascent chromatin at active replication forks and track RNA composition during chromatin maturation across the cell cycle. Shortly after fork passage, GA-rich-, alpha- and TElomeric Repeat-containing RNAs (TERRA) are associated with replicated DNA. These repeat containing RNAs arise from loci undergoing replication, suggesting an interaction in cis. Post-replication during chromatin maturation, and even after mitosis in G1, the repeats remain enriched on DNA. This suggests that specific types of repeat RNAs are transcribed shortly after DNA replication and stably associate with their loci of origin throughout the cell cycle. The presented method and data enable studies of RNA interactions with replication forks and post-replicative chromatin and provide insights into how repeat RNAs and their engagement with chromatin are regulated with respect to DNA replication and across the cell cycle.


Subject(s)
DNA Replication/genetics , DNA/genetics , Protein Processing, Post-Translational/genetics , RNA/genetics , Cell Cycle/genetics , Cell Line, Tumor , Chromatin/genetics , HeLa Cells , Histones/genetics , Humans
7.
Proc Natl Acad Sci U S A ; 116(29): 14661-14670, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31253704

ABSTRACT

In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch's postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.


Subject(s)
Halorubrum/physiology , Metagenome , Nanoarchaeota/physiology , Symbiosis/physiology , Antarctic Regions , DNA, Archaeal/genetics , DNA, Archaeal/isolation & purification , Flow Cytometry , Genome, Archaeal/genetics , Halorubrum/ultrastructure , Metagenomics , Microscopy, Electron, Transmission , Nanoarchaeota/ultrastructure , Phylogeny , Salinity
8.
BMC Genomics ; 22(1): 148, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33653280

ABSTRACT

BACKGROUND: Hepatitis C (HCV) and many other RNA viruses exist as rapidly mutating quasi-species populations in a single infected host. High throughput characterization of full genome, within-host variants is still not possible despite advances in next generation sequencing. This limitation constrains viral genomic studies that depend on accurate identification of hemi-genome or whole genome, within-host variants, especially those occurring at low frequencies. With the advent of third generation long read sequencing technologies, including Oxford Nanopore Technology (ONT) and PacBio platforms, this problem is potentially surmountable. ONT is particularly attractive in this regard due to the portable nature of the MinION sequencer, which makes real-time sequencing in remote and resource-limited locations possible. However, this technology (termed here 'nanopore sequencing') has a comparatively high technical error rate. The present study aimed to assess the utility, accuracy and cost-effectiveness of nanopore sequencing for HCV genomes. We also introduce a new bioinformatics tool (Nano-Q) to differentiate within-host variants from nanopore sequencing. RESULTS: The Nanopore platform, when the coverage exceeded 300 reads, generated comparable consensus sequences to Illumina sequencing. Using HCV Envelope plasmids (~ 1800 nt) mixed in known proportions, the capacity of nanopore sequencing to reliably identify variants with an abundance as low as 0.1% was demonstrated, provided the autologous reference sequence was available to identify the matching reads. Successful pooling and nanopore sequencing of 52 samples from patients with HCV infection demonstrated its cost effectiveness (AUD$ 43 per sample with nanopore sequencing versus $100 with paired-end short read technology). The Nano-Q tool successfully separated between-host sequences, including those from the same subtype, by bulk sorting and phylogenetic clustering without an autologous reference sequence (using only a subtype-specific generic reference). The pipeline also identified within-host viral variants and their abundance when the parameters were appropriately adjusted. CONCLUSION: Cost effective HCV whole genome sequencing and within-host variant identification without haplotype reconstruction are potential advantages of nanopore sequencing.


Subject(s)
Hepatitis C , Nanopores , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Sequence Analysis, DNA , Technology , Whole Genome Sequencing
9.
BMC Bioinformatics ; 21(1): 343, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32758139

ABSTRACT

BACKGROUND: Nanopore sequencing enables portable, real-time sequencing applications, including point-of-care diagnostics and in-the-field genotyping. Achieving these outcomes requires efficient bioinformatic algorithms for the analysis of raw nanopore signal data. However, comparing raw nanopore signals to a biological reference sequence is a computationally complex task. The dynamic programming algorithm called Adaptive Banded Event Alignment (ABEA) is a crucial step in polishing sequencing data and identifying non-standard nucleotides, such as measuring DNA methylation. Here, we parallelise and optimise an implementation of the ABEA algorithm (termed f5c) to efficiently run on heterogeneous CPU-GPU architectures. RESULTS: By optimising memory, computations and load balancing between CPU and GPU, we demonstrate how f5c can perform ∼3-5 × faster than an optimised version of the original CPU-only implementation of ABEA in the Nanopolish software package. We also show that f5c enables DNA methylation detection on-the-fly using an embedded System on Chip (SoC) equipped with GPUs. CONCLUSIONS: Our work not only demonstrates that complex genomics analyses can be performed on lightweight computing systems, but also benefits High-Performance Computing (HPC). The associated source code for f5c along with GPU optimised ABEA is available at https://github.com/hasindu2008/f5c .


Subject(s)
Computer Graphics , Nanopores , Signal Processing, Computer-Assisted , Algorithms , Computational Biology , Databases as Topic , Genome, Human , Humans , Sequence Analysis
10.
Neurobiol Dis ; 134: 104627, 2020 02.
Article in English | MEDLINE | ID: mdl-31786370

ABSTRACT

Over 1250 mutations in SCN1A, the Nav1.1 voltage-gated sodium channel gene, are associated with seizure disorders including GEFS+. To evaluate how a specific mutation, independent of genetic background, causes seizure activity we generated two pairs of isogenic human iPSC lines by CRISPR/Cas9 gene editing. One pair is a control line from an unaffected sibling, and the mutated control carrying the GEFS+ K1270T SCN1A mutation. The second pair is a GEFS+ patient line with the K1270T mutation, and the corrected patient line. By comparing the electrophysiological properties in inhibitory and excitatory iPSC-derived neurons from these pairs, we found the K1270T mutation causes cell type-specific alterations in sodium current density and evoked firing, resulting in hyperactive neural networks. We also identified differences associated with genetic background and interaction between the mutation and genetic background. Comparisons within and between dual pairs of isogenic iPSC-derived neuronal cultures provide a novel platform for evaluating cellular mechanisms underlying a disease phenotype and for developing patient-specific anti-seizure therapies.


Subject(s)
Epilepsy/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Neurons , Genotype , Humans , Induced Pluripotent Stem Cells , Mutation , Phenotype , Seizures, Febrile/genetics
11.
Bioinformatics ; 35(24): 5372-5373, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31332428

ABSTRACT

SUMMARY: The management of raw nanopore sequencing data poses a challenge that must be overcome to facilitate the creation of new bioinformatics algorithms predicated on signal analysis. SquiggleKit is a toolkit for manipulating and interrogating nanopore data that simplifies file handling, data extraction, visualization and signal processing. AVAILABILITY AND IMPLEMENTATION: SquiggleKit is cross platform and freely available from GitHub at (https://github.com/Psy-Fer/SquiggleKit). Detailed documentation can be found at (https://psy-fer.github.io/SquiggleKitDocs/). All tools have been designed to operate in python 2.7+, with minimal additional libraries. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Nanopores , Algorithms , Nanopore Sequencing , Software
12.
RNA ; 23(12): 1754-1769, 2017 12.
Article in English | MEDLINE | ID: mdl-28855326

ABSTRACT

RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps.


Subject(s)
Disease/genetics , RNA Processing, Post-Transcriptional , RNA/chemistry , Animals , Humans
13.
Bioinformatics ; 30(10): 1471-2, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24470576

ABSTRACT

SUMMARY: The initial steps in the analysis of next-generation sequencing data can be automated by way of software 'pipelines'. However, individual components depreciate rapidly because of the evolving technology and analysis methods, often rendering entire versions of production informatics pipelines obsolete. Constructing pipelines from Linux bash commands enables the use of hot swappable modular components as opposed to the more rigid program call wrapping by higher level languages, as implemented in comparable published pipelining systems. Here we present Next Generation Sequencing ANalysis for Enterprises (NGSANE), a Linux-based, high-performance-computing-enabled framework that minimizes overhead for set up and processing of new projects, yet maintains full flexibility of custom scripting when processing raw sequence data. AVAILABILITY AND IMPLEMENTATION: Ngsane is implemented in bash and publicly available under BSD (3-Clause) licence via GitHub at https://github.com/BauerLab/ngsane. CONTACT: Denis.Bauer@csiro.au SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Automation, Laboratory , Humans , Software
15.
Nucleic Acids Res ; 41(17): 8220-36, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23847102

ABSTRACT

Evolutionarily conserved RNA secondary structures are a robust indicator of purifying selection and, consequently, molecular function. Evaluating their genome-wide occurrence through comparative genomics has consistently been plagued by high false-positive rates and divergent predictions. We present a novel benchmarking pipeline aimed at calibrating the precision of genome-wide scans for consensus RNA structure prediction. The benchmarking data obtained from two refined structure prediction algorithms, RNAz and SISSIz, were then analyzed to fine-tune the parameters of an optimized workflow for genomic sliding window screens. When applied to consistency-based multiple genome alignments of 35 mammals, our approach confidently identifies >4 million evolutionarily constrained RNA structures using a conservative sensitivity threshold that entails historically low false discovery rates for such analyses (5-22%). These predictions comprise 13.6% of the human genome, 88% of which fall outside any known sequence-constrained element, suggesting that a large proportion of the mammalian genome is functional. As an example, our findings identify both known and novel conserved RNA structure motifs in the long noncoding RNA MALAT1. This study provides an extensive set of functional transcriptomic annotations that will assist researchers in uncovering the precise mechanisms underlying the developmental ontologies of higher eukaryotes.


Subject(s)
Algorithms , Genomics/methods , RNA, Long Noncoding/chemistry , Base Sequence , Evolution, Molecular , Genome, Human , Humans , Molecular Sequence Annotation , Molecular Sequence Data , Nucleic Acid Conformation
16.
PLoS Genet ; 8(7): e1002840, 2012.
Article in English | MEDLINE | ID: mdl-22911650

ABSTRACT

Pregnancy-induced noncoding RNA (PINC) and retinoblastoma-associated protein 46 (RbAp46) are upregulated in alveolar cells of the mammary gland during pregnancy and persist in alveolar cells that remain in the regressed lobules following involution. The cells that survive involution are thought to function as alveolar progenitor cells that rapidly differentiate into milk-producing cells in subsequent pregnancies, but it is unknown whether PINC and RbAp46 are involved in maintaining this progenitor population. Here, we show that, in the post-pubertal mouse mammary gland, mPINC is enriched in luminal and alveolar progenitors. mPINC levels increase throughout pregnancy and then decline in early lactation, when alveolar cells undergo terminal differentiation. Accordingly, mPINC expression is significantly decreased when HC11 mammary epithelial cells are induced to differentiate and produce milk proteins. This reduction in mPINC levels may be necessary for lactation, as overexpression of mPINC in HC11 cells blocks lactogenic differentiation, while knockdown of mPINC enhances differentiation. Finally, we demonstrate that mPINC interacts with RbAp46, as well as other members of the polycomb repressive complex 2 (PRC2), and identify potential targets of mPINC that are differentially expressed following modulation of mPINC expression levels. Taken together, our data suggest that mPINC inhibits terminal differentiation of alveolar cells during pregnancy to prevent abundant milk production and secretion until parturition. Additionally, a PRC2 complex that includes mPINC and RbAp46 may confer epigenetic modifications that maintain a population of mammary epithelial cells committed to the alveolar fate in the involuted gland.


Subject(s)
Cell Differentiation , Mammary Glands, Animal/metabolism , Pregnancy/metabolism , RNA, Untranslated/metabolism , Repressor Proteins/metabolism , Retinoblastoma-Binding Protein 7/metabolism , Animals , Female , Gene Knockdown Techniques , Mammary Glands, Animal/cytology , Mice , Mice, Inbred BALB C , Polycomb-Group Proteins , RNA, Untranslated/genetics , Rats
17.
J Neurophysiol ; 112(4): 903-12, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24805083

ABSTRACT

Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile seizures plus (GEFS+) exhibit a heat-induced increase in sodium current activity and seizure phenotype. To determine whether different SCN1A mutations cause distinct phenotypes in Drosophila as they do in humans, this study focuses on a knock-in line carrying a mutation that causes a more severe seizure disorder termed Dravet syndrome (DS). Introduction of the DS SCN1A mutation (S1231R) into the Drosophila sodium channel gene para results in flies that exhibit spontaneous and heat-induced seizures with distinct characteristics and lower onset temperature than the GEFS+ flies. Electrophysiological studies of GABAergic interneurons in the brains of adult DS flies reveal, for the first time in an in vivo model system, that a missense DS mutation causes a constitutive and conditional reduction in sodium current activity and repetitive firing. In addition, feeding with the serotonin precursor 5-HTP suppresses heat-induced seizures in DS but not GEFS+ flies. The distinct alterations of sodium currents in DS and GEFS+ GABAergic interneurons demonstrate that both loss- and gain-of-function alterations in sodium currents are capable of causing reduced repetitive firing and seizure phenotypes. The mutation-specific effects of 5-HTP on heat-induced seizures suggest the serotonin pathway as a potential therapeutic target for DS.


Subject(s)
Action Potentials , Epilepsies, Myoclonic/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Sodium/metabolism , 5-Hydroxytryptophan/metabolism , Animals , Brain/cytology , Brain/metabolism , Brain/physiopathology , Drosophila/genetics , Drosophila/metabolism , Drosophila/physiology , Epilepsies, Myoclonic/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Interneurons/metabolism , Interneurons/physiology , Mutation, Missense , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Phenotype , Serotonin/metabolism
18.
Sci Rep ; 14(1): 10000, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693215

ABSTRACT

Convolutional Neural Networks (CNNs) have been central to the Deep Learning revolution and played a key role in initiating the new age of Artificial Intelligence. However, in recent years newer architectures such as Transformers have dominated both research and practical applications. While CNNs still play critical roles in many of the newer developments such as Generative AI, they are far from being thoroughly understood and utilised to their full potential. Here we show that CNNs can recognise patterns in images with scattered pixels and can be used to analyse complex datasets by transforming them into pseudo images with minimal processing for any high dimensional dataset, representing a more general approach to the application of CNNs to datasets such as in molecular biology, text, and speech. We introduce a pipeline called DeepMapper, which allows analysis of very high dimensional datasets without intermediate filtering and dimension reduction, thus preserving the full texture of the data, enabling detection of small variations normally deemed 'noise'. We demonstrate that DeepMapper can identify very small perturbations in large datasets with mostly random variables, and that it is superior in speed and on par in accuracy to prior work in processing large datasets with large numbers of features.

19.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37729615

ABSTRACT

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Subject(s)
Antineoplastic Agents , Leukemia, Megakaryoblastic, Acute , Humans , Child , Child, Preschool , Animals , Mice , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/pathology , Proteomics , Transcription Factors , Proto-Oncogene Proteins c-bcl-2 , Repressor Proteins
20.
J Neurosci ; 32(11): 3759-64, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423096

ABSTRACT

In the adult forebrain, new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb (OB). In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3-Na(+)K(+)-ATPase was strongly expressed in mitral cells. Using a transplantation approach, we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wild-type neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system, we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Last, we provide in vivo evidence that an interaction between agrin and α3-Na(+)K(+)-ATPase is of functional importance in this system.


Subject(s)
Agrin/physiology , Neurogenesis/physiology , Neurons/metabolism , Olfactory Bulb/metabolism , Signal Transduction/physiology , Sodium-Potassium-Exchanging ATPase/physiology , Age Factors , Agrin/biosynthesis , Agrin/deficiency , Animals , Cells, Cultured , Female , Gene Expression Regulation, Enzymologic , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurons/enzymology , Olfactory Bulb/enzymology , Olfactory Bulb/growth & development , Signal Transduction/genetics , Sodium-Potassium-Exchanging ATPase/biosynthesis , Synapses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL