Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Hum Genet ; 109(2): 311-327, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35077669

ABSTRACT

Human brain organoid models that recapitulate the physiology and complexity of the human brain have a great potential for in vitro disease modeling, in particular for neurodegenerative diseases, such as Parkinson disease. In the present study, we compare single-cell RNA-sequencing data of human midbrain organoids to the developing human embryonic midbrain. We demonstrate that the in vitro model is comparable to its in vivo equivalents in terms of developmental path and cellular composition. Moreover, we investigate the potential of midbrain organoids for modeling early developmental changes in Parkinson disease. Therefore, we compare the single-cell RNA-sequencing data of healthy-individual-derived midbrain organoids to their isogenic LRRK2-p.Gly2019Ser-mutant counterparts. We show that the LRRK2 p.Gly2019Ser variant alters neurodevelopment, resulting in an untimely and incomplete differentiation with reduced cellular variability. Finally, we present four candidate genes, APP, DNAJC6, GATA3, and PTN, that might contribute to the LRRK2-p.Gly2019Ser-associated transcriptome changes that occur during early neurodevelopment.


Subject(s)
Amino Acid Substitution , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Neurogenesis/genetics , Organoids/metabolism , Parkinson Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation , Cytokines/genetics , Cytokines/metabolism , Embryo, Mammalian , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Glycine/chemistry , Glycine/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mesencephalon , Models, Biological , Mutation , Organoids/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Sequence Analysis, RNA , Serine/chemistry , Serine/metabolism , Single-Cell Analysis/methods , Transcriptome
2.
Mov Disord ; 37(1): 80-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34637165

ABSTRACT

BACKGROUND: The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. OBJECTIVES: We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. METHODS: Using two-dimensional and three-dimensional models of patients' derived neurons we recapitulated PD-related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. RESULTS: PD patient-derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2-hydroxypropyl-ß-cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient-specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. CONCLUSION: We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient-derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , 2-Hydroxypropyl-beta-cyclodextrin/metabolism , Animals , Brain/metabolism , Dopaminergic Neurons/metabolism , Humans , Mice , Neurons/metabolism , Organoids/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phenotype
3.
Analyst ; 146(7): 2358-2367, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33625407

ABSTRACT

In this study, we have aimed at developing a novel electrochemical sensing approach capable of detecting dopamine, the main biomarker in Parkinson's disease, within the highly complex cell culture matrix of human midbrain organoids in a non-invasive and label-free manner. With its ability to generate organotypic structures in vitro, induced pluripotent stem cell technology has provided the basis for the development of advanced patient-derived disease models. These include models of the human midbrain, the affected region in the neurodegenerative disorder Parkinson's disease. Up to now, however, the analysis of so-called human midbrain organoids has relied on time-consuming and invasive strategies, incapable of monitoring organoid development. Using a redox-cycling approach in combination with a 3-mercaptopropionic acid self-assembled monolayer modification enabled the increase of sensor selectivity and sensitivity towards dopamine, while simultaneously reducing matrix-mediated interferences. In this work, we demonstrate the ability to detect and monitor even small differences in dopamine release between healthy and Parkinson`s disease-specific midbrain organoids over prolonged cultivation periods, which was additionally verified using liquid chromatography-multiple reaction monitoring mass spectrometry. Furthermore, the detection of a phenotypic rescue in midbrain organoids carrying a pathogenic mutation in leucine-rich repeat kinase 2, upon treatment with the leucine-rich repeat kinase 2 inhibitor II underlines the practical implementability of our sensing approach for drug screening applications as well as personalized disease modelling.


Subject(s)
Organoids , Parkinson Disease , Drug Evaluation, Preclinical , Humans , Mesencephalon , Neurotransmitter Agents , Organoids/metabolism , Oxidation-Reduction , Parkinson Disease/metabolism
4.
Cell Tissue Res ; 382(3): 463-476, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32737576

ABSTRACT

Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organization and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, glutamatergic and serotonergic neurons. Recapitulating these in vivo features makes hMOs an excellent tool for in vitro disease phenotyping and drug discovery.


Subject(s)
Dopaminergic Neurons/metabolism , Organoids/metabolism , Sequence Analysis, RNA/methods , Transcriptome/physiology , Cell Differentiation , Humans
5.
Proc Natl Acad Sci U S A ; 114(15): 3999-4004, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28348207

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.


Subject(s)
Antiparkinson Agents/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Parkinson Disease/drug therapy , Retinoid X Receptor alpha/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacokinetics , Brain/drug effects , Cell Line , Disease Models, Animal , Dopamine/genetics , Drug Stability , Humans , Male , Mice, Inbred BALB C , Molecular Targeted Therapy , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Nuclear Receptor Subfamily 4, Group A, Member 2/agonists , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Multimerization , Rats , Retinoid X Receptor alpha/agonists , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/genetics
6.
Cell Rep ; 37(3): 109864, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686322

ABSTRACT

Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.


Subject(s)
Brain/enzymology , COUP Transcription Factor I/metabolism , Dopaminergic Neurons/enzymology , Induced Pluripotent Stem Cells/enzymology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neural Stem Cells/enzymology , Neurogenesis , Parkinson Disease/enzymology , Animals , Brain/pathology , COUP Transcription Factor I/genetics , Cell Cycle , Cell Line , Cell Proliferation , Cell Survival , Dopaminergic Neurons/pathology , Female , Humans , Induced Pluripotent Stem Cells/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice, 129 Strain , Mice, Knockout , Mutation , Neural Stem Cells/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Phenotype , RNA-Seq , Signal Transduction , Single-Cell Analysis , Time Factors
7.
Parkinsonism Relat Disord ; 75: 105-109, 2020 06.
Article in English | MEDLINE | ID: mdl-32534431

ABSTRACT

INTRODUCTION: Brain organoids are highly complex multi-cellular tissue proxies, which have recently risen as novel tools to study neurodegenerative diseases such as Parkinson's disease (PD). However, with increasing complexity of the system, usage of quantitative tools becomes challenging. OBJECTIVES: The primary objective of this study was to develop a neurotoxin-induced PD organoid model and to assess the neurotoxic effect on dopaminergic neurons using microscopy-based phenotyping in a high-content fashion. METHODS: We describe a pipeline for a machine learning-based analytical method, allowing for detailed image-based cell profiling and toxicity prediction in brain organoids treated with the neurotoxic compound 6-hydroxydopamine (6-OHDA). RESULTS: We quantified features such as dopaminergic neuron count and neuronal complexity and built a machine learning classifier with the data to optimize data processing strategies and to discriminate between different treatment conditions. We validated the approach with high content imaging data from PD patient derived midbrain organoids. CONCLUSIONS: The here described model is a valuable tool for advanced in vitro PD modeling and to test putative neurotoxic compounds.


Subject(s)
Dopaminergic Neurons , Machine Learning , Mesencephalon , Neurotoxicity Syndromes , Organoids , Oxidopamine/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Flow Cytometry , Humans , Induced Pluripotent Stem Cells , Mesencephalon/diagnostic imaging , Mesencephalon/drug effects , Mesencephalon/pathology , Microscopy, Confocal , Neurotoxicity Syndromes/diagnostic imaging , Neurotoxicity Syndromes/pathology , Organoids/diagnostic imaging , Organoids/drug effects , Organoids/pathology , Proof of Concept Study
8.
NPJ Parkinsons Dis ; 5: 5, 2019.
Article in English | MEDLINE | ID: mdl-30963107

ABSTRACT

Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the LRRK2-G2019S mutation recapitulate disease-relevant phenotypes. Automated high-content image analysis shows a decrease in the number and complexity of mDANs in LRRK2-G2019S compared to control organoids. The floor plate marker FOXA2, required for mDAN generation, increases in PD patient-derived midbrain organoids, suggesting a neurodevelopmental defect in mDANs expressing LRRK2-G2019S. Thus, we provide a robust method to reproducibly generate 3D human midbrain organoids containing mDANs to investigate PD-relevant patho-mechanisms.

9.
Acta Neuropathol Commun ; 6(1): 54, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29961428

ABSTRACT

Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.


Subject(s)
Brain/metabolism , Elongation Factor 2 Kinase/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Cell Line, Tumor , Disease Models, Animal , Elongation Factor 2 Kinase/genetics , Female , Humans , Male , Mice , Mice, Transgenic , Mutation/genetics , Neuroblastoma/pathology , Organ Culture Techniques , Prion Proteins/genetics , Prion Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Scleroproteins/toxicity , alpha-Synuclein/genetics
10.
Stem Cell Reports ; 8(5): 1144-1154, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28416282

ABSTRACT

Research on human brain development and neurological diseases is limited by the lack of advanced experimental in vitro models that truly recapitulate the complexity of the human brain. Here, we describe a robust human brain organoid system that is highly specific to the midbrain derived from regionally patterned neuroepithelial stem cells. These human midbrain organoids contain spatially organized groups of dopaminergic neurons, which make them an attractive model for the study of Parkinson's disease. Midbrain organoids are characterized in detail for neuronal, astroglial, and oligodendrocyte differentiation. Furthermore, we show the presence of synaptic connections and electrophysiological activity. The complexity of this model is further highlighted by the myelination of neurites. The present midbrain organoid system has the potential to be used for advanced in vitro disease modeling and therapy development.


Subject(s)
Mesencephalon/cytology , Neural Stem Cells/cytology , Neuroepithelial Cells/cytology , Neurogenesis , Organoids/cytology , Cells, Cultured , Dopaminergic Neurons/cytology , Humans , Myelin Sheath/metabolism , Organoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL