Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(21): 5797-803, 2016 May 24.
Article in English | MEDLINE | ID: mdl-26699469

ABSTRACT

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

2.
J Phys Chem Lett ; 15(29): 7509-7515, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39018543

ABSTRACT

The amorphous phase state of suspended nanoparticles affects their atmospheric lifetimes and environmental impact. Influence of relative humidity and chemical composition on the glass-to-liquid transition is well-known. However, the influence of the particle size on the phase transition remains uncertain. Here we show experimental data that probe the amorphous phase transition of suspended sucrose particles as a function of particle size. The depression in glass-transition temperature follows the Gibbs-Thomson or Keesom-Laplace predicted proportionality of ΔTg ∝ D-1 for particles 100-700 nm in diameter, but the proportionality changes to ΔTg ∝ D-1/2 for smaller sizes. Literature data for glass-transition temperature depression in thin films and nanoconfined compounds show similar and strong deviations from the expected D-1 behavior. While the observed proportionalities remain incompletely understood, the results here provide evidence that the deviation from ΔTg ∝ D-1 is not attributable to substrate effects.

SELECTION OF CITATIONS
SEARCH DETAIL