Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Mol Cell ; 78(4): 700-713.e7, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32289254

ABSTRACT

Impairment of ribosome function activates the MAPKKK ZAK, leading to activation of mitogen-activated protein (MAP) kinases p38 and JNK and inflammatory signaling. The mechanistic basis for activation of this ribotoxic stress response (RSR) remains completely obscure. We show that the long isoform of ZAK (ZAKα) directly associates with ribosomes by inserting its flexible C terminus into the ribosomal intersubunit space. Here, ZAKα binds helix 14 of 18S ribosomal RNA (rRNA). An adjacent domain in ZAKα also probes the ribosome, and together, these sensor domains are critically required for RSR activation after inhibition of both the E-site, the peptidyl transferase center (PTC), and ribotoxin action. Finally, we show that ablation of the RSR response leads to organismal phenotypes and decreased lifespan in the nematode Caenorhabditis elegans (C. elegans). Our findings yield mechanistic insight into how cells detect ribotoxic stress and provide experimental in vivo evidence for its physiological importance.


Subject(s)
Caenorhabditis elegans/growth & development , MAP Kinase Kinase Kinases/metabolism , Peptidyl Transferases/metabolism , RNA, Ribosomal, 18S/metabolism , Ribosomes/metabolism , Stress, Physiological , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Enzyme Activation , HeLa Cells , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , Protein Conformation , Protein Domains , RNA, Ribosomal, 18S/genetics , Sequence Homology , Signal Transduction
2.
EMBO J ; 41(17): e111650, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35899396

ABSTRACT

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Subject(s)
Mitogen-Activated Protein Kinases , Muscle, Skeletal , Animals , MAP Kinase Kinase Kinases , Mice , Mitogen-Activated Protein Kinases/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Phosphorylation , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/genetics
3.
Mol Cell Neurosci ; 98: 70-81, 2019 07.
Article in English | MEDLINE | ID: mdl-31200102

ABSTRACT

miR-137 is a highly conserved microRNA (miRNA) that is associated with the control of brain function and the etiology of psychiatric disorders including schizophrenia and bipolar disorder. The Caenorhabditis elegans genome encodes a single miR-137 ortholog called mir-234, the function of which is unknown. Here we show that mir-234 is expressed in a subset of sensory, motor and interneurons in C. elegans. Using a mir-234 deletion strain, we systematically examined the development and function of these neurons in addition to global C. elegans behaviors. We were however unable to detect phenotypes associated with loss of mir-234, possibly due to genetic redundancy. To circumvent this issue, we overexpressed mir-234 in mir-234-expressing neurons to uncover possible phenotypes. We found that mir-234-overexpression endows resistance to the acetylcholinesterase inhibitor aldicarb, suggesting modification of neuromuscular junction (NMJ) function. Further analysis revealed that mir-234 controls neuropeptide levels, therefore positing a cause of NMJ dysfunction. Together, our data suggest that mir-234 functions to control the expression of target genes that are important for neuropeptide maturation and/or transport in C. elegans. SIGNIFICANCE STATEMENT: The miR-137 family of miRNAs is linked to the control of brain function in humans. Defective regulation of miR-137 is associated with psychiatric disorders that include schizophrenia and bipolar disorder. Previous studies have revealed that miR-137 is required for the development of dendrites and for controlling the release of fast-acting neurotransmitters. Here, we analyzed the function a miR-137 family member (called mir-234) in the nematode animal model using anatomical, behavioral, electrophysiological and neuropeptide analysis. We reveal for the first time that mir-234/miR-137 is required for the release of slow-acting neuropeptides, which may also be of relevance for controlling human brain function.


Subject(s)
MicroRNAs/metabolism , Neuromuscular Junction/metabolism , Synaptic Transmission , Animals , Caenorhabditis elegans , MicroRNAs/genetics , Movement , Neuromuscular Junction/physiology , Neurons/metabolism , Neurons/physiology
4.
Cell Rep ; 43(4): 113998, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551960

ABSTRACT

RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.


Subject(s)
Endoribonucleases , Immunity, Innate , Endoribonucleases/metabolism , Endoribonucleases/genetics , Humans , Adenine Nucleotides/metabolism , Oligoribonucleotides/metabolism , Animals , Stress, Physiological , Transcriptome/genetics , RNA, Double-Stranded/metabolism
5.
Antioxid Redox Signal ; 39(4-6): 336-350, 2023 08.
Article in English | MEDLINE | ID: mdl-36825529

ABSTRACT

Significance: Translation is an essential cellular process, and diverse signaling pathways have evolved to deal with problems arising during translation. Erroneous stalls and unresolved ribosome collisions are implicated in many pathologies, including neurodegeneration and metabolic dysregulation. Recent Advances: Many proteins involved in detection and clearance of stalled and collided ribosomes have been identified and studied in detail. Ribosome profiling techniques have revealed extensive and nonprogrammed ribosome stalling and leaky translation into the 3' untranslated regions of mRNAs. Impairment of protein synthesis has been linked to aging in yeast and mice. Critical Issues: Ribosomes act as sensors of cellular states, but the molecular mechanisms, as well as physiological relevance, remain understudied. Most of our current knowledge stems from work in yeast and simple multicellular organisms such as Caenorhabditis elegans, while we are only beginning to comprehend the role of ribosome surveillance in higher organisms. As an example, the ribotoxic stress response, a pathway responding to global translational stress, has been studied mostly in response to small translation inhibitors and ribotoxins, and has only recently been explored in physiological settings. This review focuses on ribosome-surveillance pathways and their importance for cell and tissue homeostasis upon naturally occurring insults such as oxidative stress, nutrient deprivation, and viral infections. Future Directions: A better insight into the physiological roles of ribosome-surveillance pathways and their crosstalk could lead to an improved understanding of human pathologies and aging. Antioxid. Redox Signal. 39, 336-350.


Subject(s)
Protein Biosynthesis , Saccharomyces cerevisiae , Humans , Animals , Mice , Saccharomyces cerevisiae/metabolism , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/metabolism , Oxidative Stress
6.
bioRxiv ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37873202

ABSTRACT

RNase L is a regulated endoribonuclease in higher vertebrates that functions in antiviral innate immunity. Interferons induce OAS enzymes that sense double-stranded RNA of viral origin leading to synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L inhibits viral infections. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A was directly introduced into cells. Here we report that RNase L activation by 2-5A causes a ribotoxic stress response that requires the ribosome-associated MAP3K, ZAKα. Subsequently, the stress-activated protein kinases (SAPK) JNK and p38α are phosphorylated. RNase L activation profoundly altered the transcriptome by widespread depletion of mRNAs associated with different cellular functions, but also by SAPK-dependent induction of inflammatory genes. Our findings show that 2-5A is a ribotoxic stressor that causes RNA damage through RNase L triggering a ZAKα kinase cascade leading to proinflammatory signaling and apoptosis.

7.
Cells ; 12(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36980309

ABSTRACT

The kinase ZAKα acts as the proximal sensor of translational impairment and ribotoxic stress, which results in the activation of the MAP kinases p38 and JNK. Despite recent insights into the functions and binding partners of individual protein domains in ZAKα, the mechanisms by which ZAKα binds ribosomes and becomes activated have remained elusive. Here, we highlight a short, thrice-repeated, and positively charged peptide motif as critical for the ribotoxic stress-sensing function of the Sensor (S) domain of ZAKα. We use this insight to demonstrate that the mutation of the SAM domain uncouples ZAKα activity from ribosome binding. Finally, we use 3D structural comparison to identify and functionally characterize an additional folded domain in ZAKα with structural homology to YEATS domains. These insights allow us to formulate a model for ribosome-templated ZAKα activation based on the re-organization of interactions between modular protein domains. In sum, our work both advances our understanding of the protein domains and 3D architecture of the ZAKα kinase and furthers our understanding of how the ribotoxic stress response is activated.


Subject(s)
Ribosomes , p38 Mitogen-Activated Protein Kinases , Ribosomes/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Cell Death Dis ; 14(7): 467, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495584

ABSTRACT

Impairment of protein translation can cause stalling and collision of ribosomes and is a signal for the activation of ribosomal surveillance and rescue pathways. Despite clear evidence that ribosome collision occurs stochastically at a cellular and organismal level, physiologically relevant sources of such aberrations are poorly understood. Here we show that a burst of the cellular signaling molecule nitric oxide (NO) reduces translational activity and causes ribosome collision in human cell lines. This is accompanied by activation of the ribotoxic stress response, resulting in ZAKα-mediated activation of p38 and JNK kinases. In addition, NO production is associated with ZNF598-mediated ubiquitination of the ribosomal protein RPS10 and GCN2-mediated activation of the integrated stress response, which are well-described responses to the collision of ribosomes. In sum, our work implicates a novel role of NO as an inducer of ribosome collision and activation of ribosomal surveillance mechanisms in human cells.


Subject(s)
Nitric Oxide , Ribosomes , Humans , Nitric Oxide/metabolism , Ribosomes/metabolism , Protein Biosynthesis , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ubiquitination , Carrier Proteins/metabolism
9.
Science ; 382(6675): eadf3208, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38060659

ABSTRACT

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Subject(s)
Aging , MAP Kinase Kinase Kinase 3 , Obesity , Reactive Oxygen Species , Ribosomes , Stress, Physiological , Animals , Mice , Aging/metabolism , MAP Kinase Kinase Kinase 3/genetics , MAP Kinase Kinase Kinase 3/metabolism , Obesity/metabolism , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Ribosomes/metabolism , Zebrafish , Mice, Knockout
10.
iScience ; 25(2): 103791, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35146399

ABSTRACT

Coordinated expression of cell adhesion and signaling molecules is crucial for brain development. Here, we report that the Caenorhabditis elegans transforming growth factor ß (TGF-ß) type I receptor SMA-6 (small-6) acts independently of its cognate TGF-ß type II receptor DAF-4 (dauer formation-defective-4) to control neuronal guidance. SMA-6 directs neuronal development from the hypodermis through interactions with three, orphan, TGF-ß ligands. Intracellular signaling downstream of SMA-6 limits expression of NLR-1, an essential Neurexin-like cell adhesion receptor, to enable neuronal guidance. Together, our data identify an atypical TGF-ß-mediated regulatory mechanism to ensure correct neuronal development.

11.
Nat Commun ; 13(1): 4492, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918345

ABSTRACT

The small intestine is a rapidly proliferating organ that is maintained by a small population of Lgr5-expressing intestinal stem cells (ISCs). However, several Lgr5-negative ISC populations have been identified, and this remarkable plasticity allows the intestine to rapidly respond to both the local environment and to damage. However, the mediators of such plasticity are still largely unknown. Using intestinal organoids and mouse models, we show that upon ribosome impairment (driven by Rptor deletion, amino acid starvation, or low dose cyclohexamide treatment) ISCs gain an Lgr5-negative, fetal-like identity. This is accompanied by a rewiring of metabolism. Our findings suggest that the ribosome can act as a sensor of nutrient availability, allowing ISCs to respond to the local nutrient environment. Mechanistically, we show that this phenotype requires the activation of ZAKɑ, which in turn activates YAP, via SRC. Together, our data reveals a central role for ribosome dynamics in intestinal stem cells, and identify the activation of ZAKɑ as a critical mediator of stem cell identity.


Subject(s)
Intestinal Mucosa , Stem Cells , Animals , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Intestines , Mice , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Ribosomes/metabolism , Stem Cells/metabolism
12.
Cell Metab ; 34(12): 2036-2046.e8, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36384144

ABSTRACT

Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.


Subject(s)
MAP Kinase Kinase Kinases , Protein Biosynthesis , Ribosomes , Stress, Physiological , Animals , Male , Mice , MAP Kinase Kinase Kinases/metabolism
13.
Cell Rep ; 27(10): 2859-2870.e6, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31167133

ABSTRACT

Alternative translation is an important mechanism of post-transcriptional gene regulation leading to the expression of different protein isoforms originating from the same mRNA. Here, we describe an abundant long isoform of the stress/p38MAPK-activated protein kinase MK2. This isoform is constitutively translated from an alternative CUG translation initiation start site located in the 5' UTR of its mRNA. The RNA helicase eIF4A1 is needed to ensure translation of the long and the known short isoforms of MK2, of which the molecular properties were determined. Only the short isoform phosphorylated Hsp27 in vivo, supported migration and stress-induced immediate early gene (IEG) expression. Interaction profiling revealed short-isoform-specific binding partners that were associated with migration. In contrast, the long isoform contains at least one additional phosphorylatable serine in its unique N terminus. In sum, our data reveal a longer isoform of MK2 with distinct physiological properties.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Peptide Chain Initiation, Translational , Protein Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Gene Expression Regulation , HEK293 Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Phosphorylation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , RAW 264.7 Cells , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering
14.
Science ; 341(6152): 1404-8, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24052309

ABSTRACT

An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5'-diphosphate-sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells.


Subject(s)
Caenorhabditis elegans/physiology , Cell Movement , Epidermis/metabolism , Heparan Sulfate Proteoglycans/biosynthesis , MicroRNAs/physiology , Neurons/physiology , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Glycosylation , Glycosyltransferases/metabolism , Glypicans/biosynthesis , Glypicans/genetics , Heparan Sulfate Proteoglycans/genetics , MicroRNAs/genetics , Monosaccharide Transport Proteins/metabolism , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL