Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunol Methods ; 405: 35-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24444705

ABSTRACT

Camel antibodies have been widely investigated, but work has focused upon the unique heavy chain antibodies found across camelid species. These are homodimers, devoid of light chains and the first constant heavy chain domain. Camelid species also display conventional hetero-tetrameric antibodies with identical pairs of heavy and light chains; in Camelus dromedarius these constitute 25% of circulating antibodies. Few investigations have been made on this subset of antibodies and complete conventional camel IgG sequences have not been reported. Here we study the sequence diversity of functional variable and constant regions observed in 57 conventional heavy, 18 kappa and 35 lambda light chains of C. dromedarius and Camelus bactrianus. We detail sequences of the full kappa and lambda light chain, variable and CH1 region for IgG1a and IgG1b and the CH2 and CH3 region for IgG1a. The majority (60%) of IgG1 variable region sequences aligned with the human IgHV3 family (clan III) and had leader sequences beginning with MELG whereas the remaining sequences aligned with the IgHV4 (clan II) and had leader sequences beginning with MRLL. Distinct differences in CDR length were observed between the two; where CDR1 was typically 5 and 7 residues and CDR2 at 17 and 16 residues, respectively. CDR3 length of IgHV4 (range 11 to 20) was closer to that typical of VHH antibodies than that of IgHV3 (range 3 to 18 residues). Designed oligonucleotide primers have enabled identification of paired heavy and light chains of conventional camel antibodies from individual B cell clones.


Subject(s)
Antibodies/immunology , Camelus/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Camelus/classification , Camelus/genetics , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , DNA Primers/genetics , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunoglobulin kappa-Chains/genetics , Immunoglobulin kappa-Chains/immunology , Immunoglobulin lambda-Chains/genetics , Immunoglobulin lambda-Chains/immunology , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity
2.
MAbs ; 6(1): 143-59, 2014.
Article in English | MEDLINE | ID: mdl-24423622

ABSTRACT

Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe.


Subject(s)
Antibodies, Monoclonal , Bone Marrow Cells/immunology , Immunoglobulin G , Plasma Cells/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Single-Chain Antibodies , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Fluorescence , HEK293 Cells , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Plasma Cells/cytology , Rabbits , Rats , Reverse Transcriptase Polymerase Chain Reaction , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL