Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Methods ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811857

ABSTRACT

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

2.
PLoS Genet ; 17(4): e1009479, 2021 04.
Article in English | MEDLINE | ID: mdl-33857132

ABSTRACT

Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson's disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.


Subject(s)
Drosophila Proteins/genetics , Mitochondria/genetics , Neurons/metabolism , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Disease Models, Animal , Drosophila melanogaster/genetics , Humans , Light , Loss of Function Mutation/genetics , Mitochondria/radiation effects , Neurons/pathology , Neurons/radiation effects , Optogenetics/methods , Parkinson Disease/pathology , Phosphatidylinositol 3-Kinases/genetics , Retina/growth & development , Retina/metabolism , Signal Transduction/genetics , Transfection
3.
Development ; 146(8)2019 04 17.
Article in English | MEDLINE | ID: mdl-30936183

ABSTRACT

Developmental pruning of axons and dendrites is crucial for the formation of precise neuronal connections, but the mechanisms underlying developmental pruning are not fully understood. Here, we have investigated the function of JNK signaling in dendrite pruning using Drosophila class IV dendritic arborization (c4da) neurons as a model. We find that loss of JNK or its canonical downstream effectors Jun or Fos led to dendrite-pruning defects in c4da neurons. Interestingly, our data show that JNK activity in c4da neurons remains constant from larval to pupal stages but the expression of Fos is specifically activated by ecdysone receptor B1 (EcRB1) at early pupal stages, suggesting that ecdysone signaling provides temporal control of the regulation of dendrite pruning by JNK signaling. Thus, our work not only identifies a novel pathway involved in dendrite pruning and a new downstream target of EcRB1 in c4da neurons, but also reveals that JNK and Ecdysone signaling coordinate to promote dendrite pruning.


Subject(s)
Dendrites/metabolism , Drosophila Proteins/metabolism , Drosophila/cytology , Drosophila/metabolism , Ecdysone/metabolism , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Animals , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
4.
J Neurosci ; 40(9): 1819-1833, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31964717

ABSTRACT

Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.


Subject(s)
Cytoskeleton/physiology , Dendrites/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Sensation/physiology , Actins/metabolism , Animals , Animals, Genetically Modified , Cytoskeleton/ultrastructure , Dendrites/ultrastructure , Drosophila , Escape Reaction , Female , Humans , Male , Mechanoreceptors/physiology , Mutation/genetics , Social Behavior
5.
EMBO J ; 36(20): 3029-3045, 2017 10 16.
Article in English | MEDLINE | ID: mdl-28899900

ABSTRACT

Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss-of-function disorders such as Hirschsprung disease.


Subject(s)
Cell Differentiation , Cell Proliferation , Epithelial Cells/physiology , Intestinal Mucosa/physiology , Proto-Oncogene Proteins c-ret/metabolism , Animals , Drosophila , Gene Expression Regulation , Humans , Mice , Wnt Signaling Pathway
6.
Development ; 141(13): 2657-68, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24924190

ABSTRACT

As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain receptive field coverage as animals grow. After rapidly growing to establish body wall coverage, dendrites of Drosophila class IV dendrite arborization (C4da) neurons grow synchronously with their substrate, the body wall epithelium, providing a system to study how proportionality is maintained during animal growth. Here, we show that the microRNA bantam (ban) ensures coordinated growth of C4da dendrites and the epithelium through regulation of epithelial endoreplication, a modified cell cycle that entails genome amplification without cell division. In Drosophila larvae, epithelial endoreplication leads to progressive changes in dendrite-extracellular matrix (ECM) and dendrite-epithelium contacts, coupling dendrite/substrate expansion and restricting dendrite growth beyond established boundaries. Moreover, changes in epithelial expression of cell adhesion molecules, including the beta-integrin myospheroid (mys), accompany this developmental transition. Finally, endoreplication and the accompanying changes in epithelial mys expression are required to constrain late-stage dendrite growth and structural plasticity. Hence, modulating epithelium-ECM attachment probably influences substrate permissivity for dendrite growth and contributes to the dendrite-substrate coupling that ensures proportional expansion of the two cell types.


Subject(s)
Cell Enlargement , Dendrites/physiology , Drosophila/growth & development , Epithelial Cells/metabolism , MicroRNAs/metabolism , Sensory Receptor Cells/physiology , Analysis of Variance , Animals , Endoreduplication/physiology , Flow Cytometry , Immunohistochemistry , Microscopy, Electron, Transmission
7.
J Exp Biol ; 220(Pt 13): 2452-2475, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28679796

ABSTRACT

Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva - because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour-taste associative learning, as well as light/dark-electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.


Subject(s)
Behavior, Animal , Drosophila melanogaster/physiology , Animals , Brain/cytology , Brain/physiology , Drosophila melanogaster/growth & development , Larva/growth & development , Larva/physiology
8.
Genes Dis ; 10(6): 2425-2442, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37554209

ABSTRACT

Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.

9.
bioRxiv ; 2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37425961

ABSTRACT

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

10.
Nat Commun ; 14(1): 8434, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114457

ABSTRACT

Neuromodulatory signaling via G protein-coupled receptors (GPCRs) plays a pivotal role in regulating neural network function and animal behavior. The recent development of optogenetic tools to induce G protein-mediated signaling provides the promise of acute and cell type-specific manipulation of neuromodulatory signals. However, designing and deploying optogenetically functionalized GPCRs (optoXRs) with accurate specificity and activity to mimic endogenous signaling in vivo remains challenging. Here we optimize the design of optoXRs by considering evolutionary conserved GPCR-G protein interactions and demonstrate the feasibility of this approach using two Drosophila Dopamine receptors (optoDopRs). These optoDopRs exhibit high signaling specificity and light sensitivity in vitro. In vivo, we show receptor and cell type-specific effects of dopaminergic signaling in various behaviors, including the ability of optoDopRs to rescue the loss of the endogenous receptors. This work demonstrates that optoXRs can enable optical control of neuromodulatory receptor-specific signaling in functional and behavioral studies.


Subject(s)
Receptors, Dopamine , Receptors, G-Protein-Coupled , Animals , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , GTP-Binding Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism
11.
Elife ; 112022 11 21.
Article in English | MEDLINE | ID: mdl-36409070

ABSTRACT

Neurons sensing harmful mechanical forces in the larvae of fruit flies have a striking architecture of dendrites that are optimized to detect pointy objects.


Subject(s)
Drosophila , Neurons , Animals , Larva , Sensation
12.
STAR Protoc ; 3(4): 101787, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36317171

ABSTRACT

Two-choice assays allow assessing of different behaviors including light avoidance in Drosophila larvae. Typically, the readout is limited to a preference index at a specific end point. We provide a detailed protocol to set up light avoidance assays and map the temporal distribution of larvae based on analysis of larval intensities. We describe the assay setup and implementation of scripts for analysis, which can be easily adapted to other two-choice assays and different model organisms. For complete details on the use and execution of this protocol, please refer to Imambocus et al. (2022).


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Larva , Biological Assay
13.
Fly (Austin) ; 16(1): 13-23, 2022 12.
Article in English | MEDLINE | ID: mdl-34609266

ABSTRACT

Dendritic morphogenesis requires dynamic microtubules (MTs) to form a coordinated cytoskeletal network during development. Dynamic MTs are characterized by their number, polarity and speed of polymerization. Previous studies described a correlation between anterograde MT growth and terminal branch extension in Drosophila dendritic arborization (da) neurons, suggesting a model that anterograde MT polymerization provides a driving force for dendritic branching. We recently found that the Ste20-like kinase Tao specifically regulates dendritic branching by controlling the number of dynamic MTs in a kinase activity-dependent fashion, without affecting MT polarity or speed. This finding raises the interesting question of how MT dynamics affects dendritic morphogenesis, and if Tao kinase activity is developmentally regulated to coordinate MT dynamics and dendritic morphogenesis. We explored the possible correlation between MT dynamics and dendritic morphogenesis together with the activity changes of Tao kinase in C1da and C4da neurons during larval development. Our data show that spatiotemporal changes in the number of dynamic MTs, but not polarity or polymerization speed, correlate with dendritic branching and Tao kinase activity. Our findings suggest that Tao kinase limits dendritic branching by controlling the abundance of dynamic MTs and we propose a novel model on how regulation of MT dynamics might influence dendritic morphogenesis.


Subject(s)
Drosophila Proteins , Microtubules , Animals , Cytoskeleton , Drosophila , Morphogenesis
14.
Commun Biol ; 5(1): 687, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810216

ABSTRACT

Optogenetic silencing allows to reveal the necessity of selected neuronal populations for various neurophysiological functions. These range from synaptic transmission and coordinated neuronal network activity to control of specific behaviors. An ideal single-component optogenetic silencing tool should be switchable between active and inactive states with precise timing while preserving its activity in the absence of light until switched to an inactive state. Although bistable anion-conducting channelrhodopsins (ACRs) were previously engineered to reach this goal, their conducting state lifetime was limited to only a few minutes and some ACRs were not fully switchable. Here we report Aion, a bistable ACR displaying a long-lasting open state with a spontaneous closing time constant close to 15 min. Moreover, Aion can be switched between the open and closed state with millisecond precision using blue and orange light, respectively. The long conducting state enables overnight silencing of neurons with minimal light exposure. We further generated trafficking-optimized versions of Aion, which show enhanced membrane localization and allow precisely timed, long-lasting all-optical control of nociceptive responses in larvae of Drosophila melanogaster. Thus, Aion is an optogenetic silencing tool for inhibition of neuronal activity over many hours which can be switched between an active and inactive state with millisecond precision.


Subject(s)
Drosophila melanogaster , Optogenetics , Animals , Anions/metabolism , Channelrhodopsins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neurons/physiology
15.
Cell Rep ; 39(3): 110686, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443171

ABSTRACT

Microtubule (MT) modifications are critical during axon development, with stable MTs populating the axon. How these modifications are spatially coordinated is unclear. Here, via high-resolution microscopy, we show that early developing neurons have fewer somatic acetylated MTs restricted near the centrosome. At later stages, however, acetylated MTs spread out in soma and concentrate in growing axon. Live imaging in early plated neurons of the MT plus-end protein, EB3, show increased displacement and growth rate near the MTOC, suggesting local differences that might support axon selection. Moreover, F-actin disruption in early developing neurons, which show fewer somatic acetylated MTs, does not induce multiple axons, unlike later stages. Overexpression of centrosomal protein 120 (Cep120), which promotes MT acetylation/stabilization, induces multiple axons, while its knockdown downregulates proteins modulating MT dynamics and stability, hampering axon formation. Collectively, we show how centrosome-dependent MT modifications contribute to axon formation.


Subject(s)
Axons , Microtubules , Actin Cytoskeleton , Axons/metabolism , Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neurons/metabolism
16.
Curr Biol ; 32(1): 149-163.e8, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34798050

ABSTRACT

Animals display selective escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximizing chances of survival, yet the underlying network mechanisms are so far not fully understood. Using synapse-level reconstruction of the Drosophila larval network paired with physiological and behavioral readouts, we uncovered a circuit that gates selective escape behavior for noxious light through acute and input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of neuromodulatory hub neurons. We show that acute release of hub neuron-derived insulin-like peptide 7 (Ilp7) and cognate relaxin family receptor (Lgr4) signaling in downstream neurons are required for noxious light avoidance, but not harsh touch responses. Our work highlights a role for compartmentalized circuit organization and neuropeptide release from regulatory hubs, acting as central circuit elements gating escape responses.


Subject(s)
Drosophila Proteins , Neuropeptides , Animals , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Larva/physiology , Neuropeptides/genetics , Nociceptors/physiology , Sensory Receptor Cells/physiology
17.
Neuron ; 54(3): 403-16, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17481394

ABSTRACT

A neuron's dendrites typically do not cross one another. This intrinsic self-avoidance mechanism ensures unambiguous processing of sensory or synaptic inputs. Moreover, some neurons respect the territory of others of the same type, a phenomenon known as tiling. Different types of neurons, however, often have overlapping dendritic fields. We found that Down's syndrome Cell Adhesion Molecule (Dscam) is required for dendritic self-avoidance of all four classes of Drosophila dendritic arborization (da) neurons. However, neighboring mutant class IV da neurons still exhibited tiling, suggesting that self-avoidance and tiling differ in their recognition and repulsion mechanisms. Introducing 1 of the 38,016 Dscam isoforms to da neurons in Dscam mutants was sufficient to significantly restore self-avoidance. Remarkably, expression of a common Dscam isoform in da neurons of different classes prevented their dendrites from sharing the same territory, suggesting that coexistence of dendritic fields of different neuronal classes requires divergent expression of Dscam isoforms.


Subject(s)
Dendrites/physiology , Drosophila Proteins/physiology , Neurons, Afferent/physiology , Animals , Animals, Genetically Modified , Cell Adhesion Molecules , Cell Shape/physiology , Dendrites/ultrastructure , Drosophila , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Mutation/physiology , Neurons, Afferent/classification , Neurons, Afferent/cytology , Sense Organs/cytology , Staining and Labeling
18.
Nat Commun ; 12(1): 4527, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312384

ABSTRACT

Optogenetic manipulation of neuronal activity through excitatory and inhibitory opsins has become an indispensable experimental strategy in neuroscience research. For many applications bidirectional control of neuronal activity allowing both excitation and inhibition of the same neurons in a single experiment is desired. This requires low spectral overlap between the excitatory and inhibitory opsin, matched photocurrent amplitudes and a fixed expression ratio. Moreover, independent activation of two distinct neuronal populations with different optogenetic actuators is still challenging due to blue-light sensitivity of all opsins. Here we report BiPOLES, an optogenetic tool for potent neuronal excitation and inhibition with light of two different wavelengths. BiPOLES enables sensitive, reliable dual-color neuronal spiking and silencing with single- or two-photon excitation, optical tuning of the membrane voltage, and independent optogenetic control of two neuronal populations using a second, blue-light sensitive opsin. The utility of BiPOLES is demonstrated in worms, flies, mice and ferrets.


Subject(s)
Cell Membrane/physiology , Opsins/metabolism , Optogenetics/methods , Pyramidal Cells/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cells, Cultured , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Ferrets/genetics , Ferrets/metabolism , HEK293 Cells , Hippocampus/cytology , Humans , Male , Membrane Potentials/physiology , Mice, Transgenic , Opsins/genetics , Patch-Clamp Techniques/methods , Pyramidal Cells/cytology , Pyramidal Cells/metabolism , Rats, Wistar , Reproducibility of Results
19.
Neuron ; 109(10): 1621-1635.e8, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33979634

ABSTRACT

Information is carried between brain regions through neurotransmitter release from axonal presynaptic terminals. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity. However, existing inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals, while chemogenetic tools are difficult to control in space and time. Here, we show that a targeting-enhanced mosquito homolog of the vertebrate encephalopsin (eOPN3) can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. In freely moving mice, eOPN3-mediated suppression of dopaminergic nigrostriatal afferents induces a reversible ipsiversive rotational bias. We conclude that eOPN3 can be used to selectively suppress neurotransmitter release at presynaptic terminals with high spatiotemporal precision, opening new avenues for functional interrogation of long-range neuronal circuits in vivo.


Subject(s)
Dopamine/metabolism , Insect Proteins/genetics , Optogenetics/methods , Rhodopsin/genetics , Synaptic Potentials , Animals , Cells, Cultured , Culicidae , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , HEK293 Cells , Humans , Insect Proteins/metabolism , Locomotion , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Rats, Wistar , Rhodopsin/metabolism , Substantia Nigra/cytology , Substantia Nigra/physiology
20.
Elife ; 92020 09 30.
Article in English | MEDLINE | ID: mdl-32996461

ABSTRACT

Adhesion-type GPCRs (aGPCRs) participate in a vast range of physiological processes. Their frequent association with mechanosensitive functions suggests that processing of mechanical stimuli may be a common feature of this receptor family. Previously, we reported that the Drosophila aGPCR CIRL sensitizes sensory responses to gentle touch and sound by amplifying signal transduction in low-threshold mechanoreceptors (Scholz et al., 2017). Here, we show that Cirl is also expressed in high-threshold mechanical nociceptors where it adjusts nocifensive behaviour under physiological and pathological conditions. Optogenetic in vivo experiments indicate that CIRL lowers cAMP levels in both mechanosensory submodalities. However, contrasting its role in touch-sensitive neurons, CIRL dampens the response of nociceptors to mechanical stimulation. Consistent with this finding, rat nociceptors display decreased Cirl1 expression during allodynia. Thus, cAMP-downregulation by CIRL exerts opposing effects on low-threshold mechanosensors and high-threshold nociceptors. This intriguing bipolar action facilitates the separation of mechanosensory signals carrying different physiological information.


Subject(s)
Drosophila Proteins/metabolism , Mechanoreceptors/physiology , Mechanotransduction, Cellular/genetics , Nociception , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Action Potentials/physiology , Animals , Drosophila melanogaster , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL