Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36142452

ABSTRACT

Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.


Subject(s)
Breast Neoplasms , Cell Cycle Proteins , Breast Neoplasms/genetics , Cell Cycle Proteins/metabolism , Female , Humans , Ligands , PPAR gamma/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Repressor Proteins/genetics , Transcription Factors
2.
Cell Stem Cell ; 31(7): 1072-1090.e8, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754429

ABSTRACT

Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.


Subject(s)
Cell Lineage , Embryonic Development , Proteomics , Animals , Mice , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Humans , Single-Cell Analysis , Cell Differentiation , Gastrula/metabolism , Gastrulation
3.
Mol Metab ; 78: 101829, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38445671

ABSTRACT

OBJECTIVE: In vivo studies in humans and mice have implicated the pseudokinase Tribbles 3 (TRIB3) in various aspects of energy metabolism. Whilst cell-based studies indicate a role for TRIB3 in adipocyte differentiation and function, it is unclear if and how these cellular functions may contribute to overall metabolic health. METHODS: We investigated the metabolic phenotype of whole-body Trib3 knockout (Trib3KO) mice, focusing on adipocyte and adipose tissue functions. In addition, we combined lipidomics, transcriptomics, interactomics and phosphoproteomics analyses to elucidate cell-intrinsic functions of TRIB3 in pre- and mature adipocytes. RESULTS: Trib3KO mice display increased adiposity, but their insulin sensitivity remains unaltered. Trib3KO adipocytes are smaller and display higher Proliferating Cell Nuclear Antigen (PCNA) levels, indicating potential alterations in either i) proliferation-differentiation balance, ii) impaired expansion after cell division, or iii) an altered balance between lipid storage and release, or a combination thereof. Lipidome analyses suggest TRIB3 involvement in the latter two processes, as triglyceride storage is reduced and membrane composition, which can restrain cellular expansion, is altered. Integrated interactome, phosphoproteome and transcriptome analyses support a role for TRIB3 in all three cellular processes through multiple cellular pathways, including Mitogen Activated Protein Kinase- (MAPK/ERK), Protein Kinase A (PKA)-mediated signaling and Transcription Factor 7 like 2 (TCF7L2) and Beta Catenin-mediated gene expression. CONCLUSIONS: Our findings support TRIB3 playing multiple distinct regulatory roles in the cytoplasm, nucleus and mitochondria, ultimately controlling adipose tissue homeostasis, rather than affecting a single cellular pathway.


Subject(s)
Adipocytes , Adipose Tissue , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Cell Proliferation , Homeostasis , Lipids , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Repressor Proteins
4.
Cancers (Basel) ; 13(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34944947

ABSTRACT

The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.

SELECTION OF CITATIONS
SEARCH DETAIL