Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Med Genet A ; 191(5): 1227-1239, 2023 05.
Article in English | MEDLINE | ID: mdl-36751037

ABSTRACT

AMOTL1 encodes angiomotin-like protein 1, an actin-binding protein that regulates cell polarity, adhesion, and migration. The role of AMOTL1 in human disease is equivocal. We report a large cohort of individuals harboring heterozygous AMOTL1 variants and define a core phenotype of orofacial clefting, congenital heart disease, tall stature, auricular anomalies, and gastrointestinal manifestations in individuals with variants in AMOTL1 affecting amino acids 157-161, a functionally undefined but highly conserved region. Three individuals with AMOTL1 variants outside this region are also described who had variable presentations with orofacial clefting and multi-organ disease. Our case cohort suggests that heterozygous missense variants in AMOTL1, most commonly affecting amino acid residues 157-161, define a new orofacial clefting syndrome, and indicates an important functional role for this undefined region.


Subject(s)
Cleft Lip , Cleft Palate , Heart Defects, Congenital , Humans , Cleft Palate/diagnosis , Cleft Palate/genetics , Cleft Lip/diagnosis , Cleft Lip/genetics , Mutation , Mutation, Missense/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Angiomotins
2.
Hum Mutat ; 39(11): 1677-1685, 2018 11.
Article in English | MEDLINE | ID: mdl-30311382

ABSTRACT

The use of genome-scale sequencing allows for identification of genetic findings beyond the original indication for testing (secondary findings). The ClinGen Actionability Working Group's (AWG) protocol for evidence synthesis and semi-quantitative metric scoring evaluates four domains of clinical actionability for potential secondary findings: severity and likelihood of the outcome, and effectiveness and nature of the intervention. As of February 2018, the AWG has scored 127 genes associated with 78 disorders (up-to-date topics/scores are available at www.clinicalgenome.org). Scores across these disorders were assessed to compare genes/disorders recommended for return as secondary findings by the American College of Medical Genetics and Genomics (ACMG) with those not currently recommended. Disorders recommended by the ACMG scored higher on outcome-related domains (severity and likelihood), but not on intervention-related domains (effectiveness and nature of the intervention). Current practices indicate that return of secondary findings will expand beyond those currently recommended by the ACMG. The ClinGen AWG evidence reports and summary scores are not intended as classifications of actionability, rather they provide a resource to aid decision makers as they determine best practices regarding secondary findings. The ClinGen AWG is working with the ACMG Secondary Findings Committee to update future iterations of their secondary findings list.


Subject(s)
Genome, Human/genetics , Databases, Genetic , Exome/genetics , Genetic Testing , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Humans
3.
Eur J Med Genet ; 63(11): 104031, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32818658

ABSTRACT

Mutations in the gene kyphoscoliosis peptidase (KY) are known to cause myofibrillar myopathy-7 and hereditary spastic paraplegia. We investigated the genetic cause of a complex neurological phenotype in a consanguineous Pakistani family with four affected members, manifesting lower limb spasticity and weakness, toe walking, pes equinovarus, and a speech disorder. Genome-wide linkage analysis with microsatellite markers delineated chromosome 3q22.2-q24 harboring the disease gene. Whole exome sequencing was performed for two subjects, identifying a homozygous 14-bp frameshift deletion NM_178554.6:c.842_855del; p(Val281GlyfsTer18) in KY. The variant segregated with the phenotype and was absent from public databases and 100 ethnically matched controls. We confirm a novel homozygous KY variant causing a complex neurological phenotype in this family. A review of previously reported KY variants suggests that variants in this gene can cause a spectrum of neurological phenotypes.


Subject(s)
Myopathies, Structural, Congenital/genetics , Peptide Hydrolases/genetics , Phenotype , Spastic Paraplegia, Hereditary/genetics , Child , Female , Frameshift Mutation , Gait , Homozygote , Humans , Male , Myopathies, Structural, Congenital/pathology , Pedigree , Spastic Paraplegia, Hereditary/pathology , Speech
4.
Otolaryngol Head Neck Surg ; 163(5): 1011-1017, 2020 11.
Article in English | MEDLINE | ID: mdl-32600122

ABSTRACT

OBJECTIVE: To evaluate inheritance patterns and define the familial clustering rate of idiopathic subglottic stenosis (iSGS). STUDY DESIGN: Retrospective observational study. SETTING: International multicenter collaborative of >30 tertiary care centers. METHODS: Patients with a clinically confirmed iSGS diagnosis within the North American Airway Collaborative's iSGS1000 cohort consented between 2014 and 2018 were eligible for enrollment. Patient demographics and disease severity were abstracted from the collaborative's iSGS longitudinal registry. Pedigrees of affected families were created. RESULTS: A total of 810 patients with iSGS were identified. Positive family history for iSGS was reported in 44 patients in 20 families. The rate of familial clustering in iSGS is 2.5%. Mean age of disease onset is 42.6 years. Of the 44 patients with familial aggregation of iSGS, 42 were female and 2 were male; 13 were mother-daughter pairs and 2 were father-daughter pairs. There were 3 sister-sister pairs. There was 1 niece-aunt pair and 2 groups of 3 family members. One pedigree demonstrated 2 affected mother-daughter pairs, with the mothers being first-degree paternal cousins. Inheritance is non-Mendelian, and anticipation is present in 11 of 13 (84%) parent-offspring pairs. The mean age of onset between parents (48.4 years) and offspring (36.1 years) was significantly different (P = .016). CONCLUSION: This study quantifies the rate of familial clustering of iSGS at 2.5%. Inheritance is non-Mendelian, and disease demonstrates anticipation. These data suggest that there may be a genetic contribution in iSGS.


Subject(s)
Inheritance Patterns , Laryngostenosis/genetics , Adult , Age of Onset , Family , Female , Humans , Male , Middle Aged , Patient Acuity , Pedigree , Retrospective Studies
5.
J Clin Invest ; 129(8): 3171-3184, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31264976

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal ß-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and ß-catenin. A pharmacological activator of the WNT/ß-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and ß-catenin, and evidence for targeted activation of the WNT/ß-catenin pathway as a potential treatment for this disease.


Subject(s)
Ankyrins , Arrhythmogenic Right Ventricular Dysplasia , Myocardium , Wnt Signaling Pathway , Animals , Ankyrins/genetics , Ankyrins/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Arrhythmogenic Right Ventricular Dysplasia/pathology , Disease Models, Animal , Female , Humans , Indoles/pharmacology , Male , Maleimides/pharmacology , Mice , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL