ABSTRACT
Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.
Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Evolution, Molecular , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV-1/chemistry , HIV-1/immunology , AIDS Vaccines/immunology , Africa , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , CD4 Antigens/chemistry , CD4 Antigens/immunology , Cell Lineage , Cells, Cultured , Clone Cells/cytology , Cross Reactions/immunology , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , HIV Antibodies/genetics , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , HIV-1/classification , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Neutralization Tests , Phylogeny , Protein Structure, TertiaryABSTRACT
HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.
Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Viral Envelope Proteins/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Fluorescent Antibody Technique , HIV-1/immunology , Humans , Intestinal Mucosa/virology , Macaca mulatta , Protein Conformation , Rectum , Reverse Transcriptase Polymerase Chain Reaction , Surface Plasmon Resonance , Viral Envelope Proteins/chemistryABSTRACT
BACKGROUND: In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS: In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS: Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS: This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/blood , HIV Infections/immunology , HIV-1/immunology , Adult , Case-Control Studies , Follow-Up Studies , HIV Infections/prevention & control , Humans , Immunoglobulin A/blood , Multivariate Analysis , Odds Ratio , Regression Analysis , Risk , Treatment OutcomeABSTRACT
Variants near the HLA-DP gene show the strongest genome-wide association with chronic hepatitis B virus (HBV) infection and HBV recovery/persistence in Asians. To test the effect of the HLA-DP region on outcomes to HBV infection, we sequenced the polymorphic HLA-DPB1 and DPA1 coding exons and the corresponding 3' untranslated regions (3'UTRs) in 662 individuals of European-American and African-American ancestry. The genome-wide association study (GWAS) variant (rs9277535; 550A/G) in the 3'UTR of the HLA-DPB1 gene that associated most significantly with chronic hepatitis B and outcomes to HBV infection in Asians had a marginal effect on HBV recovery in our European- and African-American samples (odds ratio [OR] = 0.39, P = 0.01, combined ethnic groups). However, we identified a novel variant in the HLA-DPB1 3'UTR region, 496A/G (rs9277534), which associated very significantly with HBV recovery in both European and African-American populations (OR = 0.37, P = 0.0001, combined ethnic groups). The 496A/G variant distinguishes the most protective HLA-DPB1 allele (DPB1*04:01) from the most susceptible (DPB1*01:01), whereas 550A/G does not. 496A/G has a stronger effect than any individual HLA-DPB1 or DPA1 allele and any other HLA alleles that showed an association with HBV recovery in our European-American cohort. The 496GG genotype, which confers recessive susceptibility to HBV persistence, also associates in a recessive manner with significantly higher levels of HLA-DP surface protein and transcript level expression in healthy donors, suggesting that differences in expression of HLA-DP may increase the risk of persistent HBV infection.
Subject(s)
HLA-DP alpha-Chains/genetics , HLA-DP beta-Chains/genetics , Hepatitis B virus/physiology , Hepatitis B/genetics , Racial Groups/genetics , Cohort Studies , Genetic Variation , Genome-Wide Association Study , HumansABSTRACT
CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8(+) T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8(+) responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8(+) T cells during AHI. Autologous and heterologous CD8(+) T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8(+) T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8(+) antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8(+)-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8(+) T cell-mediated inhibition of virus replication. CD8(+) T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Down-Regulation , HIV Antigens/immunology , HIV Infections/virology , HIV-1/immunology , Virus Replication , Adult , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Cohort Studies , Female , HIV Antigens/genetics , HIV Infections/immunology , HIV-1/genetics , HIV-1/physiology , Humans , Male , Middle Aged , Young AdultABSTRACT
Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.
Subject(s)
HIV Infections/genetics , HIV-1/genetics , Mutation, Missense , Protein Sorting Signals/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Adaptive Immunity , Amino Acid Motifs , Amino Acid Substitution , Antibodies, Viral/immunology , Binding Sites/genetics , CD4 Antigens/genetics , CD4 Antigens/immunology , Chronic Disease , Gene Expression Regulation, Viral/physiology , Glycosylation , HIV Infections/immunology , HIV-1/immunology , HIV-1/pathogenicity , Receptors, CCR5/genetics , Receptors, CCR5/immunology , Retrospective Studies , env Gene Products, Human Immunodeficiency Virus/biosynthesisABSTRACT
Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. bnAbs occur in some HIV-1-infected individuals and frequently have characteristics of autoantibodies. We have studied cohorts of HIV-1-infected individuals who made bnAbs and compared them with those who did not do so, and determined immune traits associated with the ability to produce bnAbs. HIV-1-infected individuals with bnAbs had a higher frequency of blood autoantibodies, a lower frequency of regulatory CD4+ T cells, a higher frequency of circulating memory T follicular helper CD4+ cells, and a higher T regulatory cell level of programmed cell death-1 expression compared with HIV-1-infected individuals without bnAbs. Thus, induction of HIV-1 bnAbs may require vaccination regimens that transiently mimic immunologic perturbations in HIV-1-infected individuals.
ABSTRACT
The Center for HIV/AIDS Vaccine Immunology (CHAVI) consortium was established to determine the host and virus factors associated with HIV transmission, infection and containment of virus replication, with the goal of advancing the development of an HIV protective vaccine. Studies to meet this goal required the use of cryopreserved Peripheral Blood Mononuclear Cell (PBMC) specimens, and therefore it was imperative that a quality assurance (QA) oversight program be developed to monitor PBMC samples obtained from study participants at multiple international sites. Nine site-affiliated laboratories in Africa and the USA collected and processed PBMCs, and cryopreserved PBMC were shipped to CHAVI repositories in Africa and the USA for long-term storage. A three-stage program was designed, based on Good Clinical Laboratory Practices (GCLP), to monitor PBMC integrity at each step of this process. The first stage evaluated the integrity of fresh PBMCs for initial viability, overall yield, and processing time at the site-affiliated laboratories (Stage 1); for the second stage, the repositories determined post-thaw viability and cell recovery of cryopreserved PBMC, received from the site-affiliated laboratories (Stage 2); the third stage assessed the long-term specimen storage at each repository (Stage 3). Overall, the CHAVI PBMC QA oversight program results highlight the relative importance of each of these stages to the ultimate goal of preserving specimen integrity from peripheral blood collection to long-term repository storage.
Subject(s)
AIDS Vaccines/therapeutic use , Clinical Trials as Topic/standards , Cryopreservation/standards , HIV Infections/therapy , Immunologic Tests/standards , Laboratories/standards , Laboratory Proficiency Testing/standards , Leukocytes, Mononuclear/immunology , Monitoring, Immunologic/standards , Specimen Handling/standards , Africa , Cell Survival , Consensus , Cooperative Behavior , Guideline Adherence/standards , HIV Infections/diagnosis , HIV Infections/immunology , HIV Infections/virology , Humans , International Cooperation , Leukocytes, Mononuclear/virology , Longitudinal Studies , Observer Variation , Practice Guidelines as Topic/standards , Predictive Value of Tests , Program Development , Program Evaluation , Quality Control , Reproducibility of Results , Time Factors , Treatment Outcome , United States , WorkflowABSTRACT
UNLABELLED: In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008-0.05; estimated odds ratios of 0.53-0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT00223080.
Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Immunoglobulin G/immunology , Adolescent , Adult , Amino Acid Sequence , Case-Control Studies , Cluster Analysis , Enzyme-Linked Immunosorbent Assay , Female , HIV Antigens/chemistry , HIV Antigens/immunology , Humans , Male , Molecular Sequence Data , Odds Ratio , Placebos , Risk Factors , Statistics, Nonparametric , Treatment Outcome , Young AdultABSTRACT
A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn's disease, suggesting a broader influence of HLA expression levels in human disease.
Subject(s)
Gene Expression Regulation , HIV Infections/genetics , HIV Infections/immunology , HIV/immunology , HLA-C Antigens/genetics , T-Lymphocytes, Cytotoxic/immunology , Black or African American/genetics , Alleles , Amino Acid Sequence , Anti-Retroviral Agents/therapeutic use , Crohn Disease/genetics , Crohn Disease/immunology , HIV/genetics , HIV Infections/drug therapy , Humans , Immunodominant Epitopes/genetics , Molecular Sequence Data , Mutation , Peptide Fragments/immunology , Polymorphism, Single Nucleotide , Viral Load/geneticsABSTRACT
OBJECTIVE: Different HIV-1 antigen specificities appear in sequence after HIV-1 transmission and the immunoglobulin G (IgG) subclass responses to HIV antigens are distinct from each other. The initial predominant IgG subclass response to HIV-1 infection consists of IgG1 and IgG3 antibodies with a noted decline in some IgG3 antibodies during acute HIV-1 infection. Thus, we postulate that multiple antigen-specific IgG3 responses may serve as surrogates for the relative time since HIV-1 acquisition. DESIGN: We determined the magnitude, peak, and half-life of HIV-1 antigen-specific IgG1 and IgG3 antibodies in 41 HIV-1-infected individuals followed longitudinally from acute infection during the first appearance of HIV-1-specific antibodies through approximately 6 months after infection. METHODS: We used quantitative HIV-1-binding antibody multiplex assays and exponential decay models to estimate concentrations of IgG1 and IgG3 antibodies to eight different HIV-1 proteins including gp140 Env, gp120 Env, gp41 Env, p66 reverse transcriptase, p31 Integrase, Tat, Nef, and p55 Gag proteins during acute/recent HIV-1 infection. RESULTS: Among HIV-1-specific IgG3 responses, anti-gp41 IgG3 antibodies were the first to appear. We found that anti-gp41 Env IgG3 and anti-p66 reverse transcriptase IgG3 antibodies, in addition to anti-Gag IgG3 antibodies, each consistently and measurably declined after acute infection, in contrast to the persistent antigen-specific IgG1 responses. CONCLUSION: The detailed measurements of the decline in multiple HIV-specific IgG3 responses simultaneous with persistent IgG1 responses during acute and recent HIV-1 infection could serve as markers for detection of incident HIV infection.
Subject(s)
Antibody Specificity/immunology , HIV Antigens/immunology , HIV Infections/diagnosis , HIV Infections/immunology , HIV-1/immunology , Immunoglobulin G/blood , Adolescent , Adult , Algorithms , Antigen-Antibody Reactions , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Time Factors , Viral Load , Young AdultABSTRACT
The adaptive immune system relies on rare cognate lymphocytes to detect pathogen-derived antigens. Naïve lymphocytes recirculate through secondary lymphoid organs in search of cognate antigen. Here, we show that the naïve-lymphocyte recirculation pattern is controlled at the level of innate immune recognition, independent of antigen-specific stimulation. We demonstrate that inflammation-induced lymphocyte recruitment to the lymph node is mediated by the remodeling of the primary feed arteriole, and that its physiological role is to increase the efficiency of screening for rare antigen-specific lymphocytes. Our data reveal a mechanism of innate control of adaptive immunity: by increasing the pool of naïve lymphocytes for detection of foreign antigens via regulation of vascular input to the local lymph node.
Subject(s)
Arterioles/pathology , Immunity, Innate , Lymph Nodes/pathology , Lymphocytes/immunology , Animals , Female , Hypertrophy , Inflammation/pathology , Lymph Nodes/blood supply , Lymphatic Vessels/pathology , Lymphocyte Count , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Th1 Cells/immunologyABSTRACT
The members of the lymphotoxin (LT) family of molecules play a critical role in lymphoid organogenesis. Whereas LT alpha-deficient mice lack all lymph nodes and Peyer's patches, mice deficient in LT beta retain mesenteric lymph nodes and cervical lymph nodes, suggesting that an LT beta-independent pathway exists for the generation of mucosal lymph nodes. In this study, we describe the presence of a lymph node in LT beta-deficient mice responsible for draining the genital mucosa. In the majority of LT beta-deficient mice, a lymph node was found near the iliac artery, slightly misplaced from the site of the sacral lymph node in wild-type mice. The sacral lymph node of the LT beta-deficient mice, as well as that of the wild-type mice, expressed the mucosal addressin cell adhesion molecule-1 similar to the mesenteric lymph node. Following intravaginal infection with HSV type 2, activated dendritic cells capable of stimulating a Th1 response were found in this sacral lymph node. Furthermore, normal HSV-2-specific IgG responses were generated in the LT beta-deficient mice following intravaginal HSV-2 infection even in the absence of the spleen. Therefore, an LT beta-independent pathway exists for the development of a lymph node associated with the genital mucosa, and such a lymph node serves to generate potent immune responses against viral challenge.