Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Annu Rev Immunol ; 37: 521-546, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30726153

ABSTRACT

Resident memory T (Trm) cells stably occupy tissues and cannot be sampled in superficial venous blood. Trm cells are heterogeneous but collectively constitute the most abundant memory T cell subset. Trm cells form an integral part of the immune sensing network, monitor for local perturbations in homeostasis throughout the body, participate in protection from infection and cancer, and likely promote autoimmunity, allergy, and inflammatory diseases and impede successful transplantation. Thus Trm cells are major candidates for therapeutic manipulation. Here we review CD8+ and CD4+ Trm ontogeny, maintenance, function, and distribution within lymphoid and nonlymphoid tissues and strategies for their study. We briefly discuss other resident leukocyte populations, including innate lymphoid cells, macrophages, natural killer and natural killer T cells, nonclassical T cells, and memory B cells. Lastly, we highlight major gaps in knowledge and propose ways in which a deeper understanding could result in new methods to prevent or treat diverse human diseases.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/physiology , Leukocytes/immunology , Macrophages/immunology , Animals , Cell Movement , Humans , Immunity, Innate , Immunologic Memory , Organ Specificity
2.
Nature ; 614(7949): 762-766, 2023 02.
Article in English | MEDLINE | ID: mdl-36653453

ABSTRACT

Differentiated somatic mammalian cells putatively exhibit species-specific division limits that impede cancer but may constrain lifespans1-3. To provide immunity, transiently stimulated CD8+ T cells undergo unusually rapid bursts of numerous cell divisions, and then form quiescent long-lived memory cells that remain poised to reproliferate following subsequent immunological challenges. Here we addressed whether T cells are intrinsically constrained by chronological or cell-division limits. We activated mouse T cells in vivo using acute heterologous prime-boost-boost vaccinations4, transferred expanded cells to new mice, and then repeated this process iteratively. Over 10 years (greatly exceeding the mouse lifespan)5 and 51 successive immunizations, T cells remained competent to respond to vaccination. Cells required sufficient rest between stimulation events. Despite demonstrating the potential to expand the starting population at least 1040-fold, cells did not show loss of proliferation control and results were not due to contamination with young cells. Persistent stimulation by chronic infections or cancer can cause T cell proliferative senescence, functional exhaustion and death6. We found that although iterative acute stimulations also induced sustained expression and epigenetic remodelling of common exhaustion markers (including PD1, which is also known as PDCD1, and TOX) in the cells, they could still proliferate, execute antimicrobial functions and form quiescent memory cells. These observations provide a model to better understand memory cell differentiation, exhaustion, cancer and ageing, and show that functionally competent T cells can retain the potential for extraordinary population expansion and longevity well beyond their organismal lifespan.


Subject(s)
Cell Division , Cellular Senescence , Longevity , Lymphocyte Activation , T-Lymphocytes , Animals , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Immunologic Memory , Longevity/immunology , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Cellular Senescence/immunology , Cellular Senescence/physiology , Immunization, Secondary , Vaccination , Adoptive Transfer , Time Factors , Infections/immunology , Chronic Disease , Epigenesis, Genetic
3.
J Immunol ; 206(5): 931-935, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33441437

ABSTRACT

The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Vaccination/methods , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/virology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Genetic Vectors/immunology , HLA-A2 Antigen/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
4.
J Immunol ; 207(2): 376-379, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34193597

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing Abs target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with a human adenovirus type 5 vector expressing the SARS-CoV-2 nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and K18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral Ags in SARS-CoV-2 vaccines, even if they are not a target of neutralizing Abs, to broaden epitope coverage and immune effector mechanisms.


Subject(s)
Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Immunologic Memory/immunology , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Phosphoproteins/immunology , Vaccination , Vero Cells
5.
Circ Res ; 111(9): 1125-36, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22912385

ABSTRACT

RATIONALE: Cardiomyocytes (CMs) differentiated from human pluripotent stem cells (PSCs) are increasingly being used for cardiovascular research, including disease modeling, and hold promise for clinical applications. Current cardiac differentiation protocols exhibit variable success across different PSC lines and are primarily based on the application of growth factors. However, extracellular matrix is also fundamentally involved in cardiac development from the earliest morphogenetic events, such as gastrulation. OBJECTIVE: We sought to develop a more effective protocol for cardiac differentiation of human PSCs by using extracellular matrix in combination with growth factors known to promote cardiogenesis. METHODS AND RESULTS: PSCs were cultured as monolayers on Matrigel, an extracellular matrix preparation, and subsequently overlayed with Matrigel. The matrix sandwich promoted an epithelial-to-mesenchymal transition as in gastrulation with the generation of N-cadherin-positive mesenchymal cells. Combining the matrix sandwich with sequential application of growth factors (Activin A, bone morphogenetic protein 4, and basic fibroblast growth factor) generated CMs with high purity (up to 98%) and yield (up to 11 CMs/input PSC) from multiple PSC lines. The resulting CMs progressively matured over 30 days in culture based on myofilament expression pattern and mitotic activity. Action potentials typical of embryonic nodal, atrial, and ventricular CMs were observed, and monolayers of electrically coupled CMs modeled cardiac tissue and basic arrhythmia mechanisms. CONCLUSIONS: Dynamic extracellular matrix application promoted epithelial-mesenchymal transition of human PSCs and complemented growth factor signaling to enable robust cardiac differentiation.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/physiology , Collagen , Extracellular Matrix/physiology , Laminin , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Proteoglycans , Activins/pharmacology , Bone Morphogenetic Protein 4/pharmacology , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , Drug Combinations , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Fibroblast Growth Factor 2/pharmacology , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
6.
Nat Aging ; 4(8): 1053-1063, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38867059

ABSTRACT

Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.


Subject(s)
Cellular Senescence , Epigenesis, Genetic , Animals , Humans , Mice , Cellular Senescence/genetics , Cellular Senescence/immunology , Aging/immunology , Aging/genetics , T-Lymphocytes/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Memory T Cells/immunology , Memory T Cells/metabolism , Mice, Inbred C57BL , Male , T-Cell Senescence
7.
J Exp Med ; 220(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37097449

ABSTRACT

The oral mucosa is a frontline for microbial exposure and juxtaposes several unique tissues and mechanical structures. Based on parabiotic surgery of mice receiving systemic viral infections or co-housing with microbially diverse pet shop mice, we report that the oral mucosa harbors CD8+ CD103+ resident memory T cells (TRM), which locally survey tissues without recirculating. Oral antigen re-encounter during the effector phase of immune responses potentiated TRM establishment within tongue, gums, palate, and cheek. Upon reactivation, oral TRM triggered changes in somatosensory and innate immune gene expression. We developed in vivo methods for depleting CD103+ TRM while sparing CD103neg TRM and recirculating cells. This revealed that CD103+ TRM were responsible for inducing local gene expression changes. Oral TRM putatively protected against local viral infection. This study provides methods for generating, assessing, and in vivo depleting oral TRM, documents their distribution throughout the oral mucosa, and provides evidence that TRM confer protection and trigger responses in oral physiology and innate immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Memory T Cells , Animals , Mice , Antigens/metabolism , Immunologic Memory , Mouth Mucosa
8.
Sci Immunol ; 7(78): eadd3075, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36459542

ABSTRACT

Respiratory tract resident memory T cells (TRM), typically generated by local vaccination or infection, can accelerate control of pulmonary infections that evade neutralizing antibody. It is unknown whether mRNA vaccination establishes respiratory TRM. We generated a self-amplifying mRNA vaccine encoding the influenza A virus nucleoprotein that is encapsulated in modified dendron-based nanoparticles. Here, we report how routes of immunization in mice, including contralateral versus ipsilateral intramuscular boosts, or intravenous and intranasal routes, influenced influenza-specific cell-mediated and humoral immunity. Parabiotic surgeries revealed that intramuscular immunization was sufficient to establish CD8 TRM in the lung and draining lymph nodes. Contralateral, compared with ipsilateral, intramuscular boosting broadened the distribution of lymph node TRM and T follicular helper cells but slightly diminished resulting levels of serum antibody. Intranasal mRNA delivery established modest circulating CD8 and CD4 T cell memory but augmented distribution to the respiratory mucosa. Combining intramuscular immunizations with an intranasal mRNA boost achieved high levels of both circulating T cell memory and lung TRM. Thus, routes of mRNA vaccination influence humoral and cell-mediated immunity, and intramuscular prime-boosting establishes lung TRM that can be further expanded by an additional intranasal immunization.


Subject(s)
CD4-Positive T-Lymphocytes , Vaccination , Animals , Mice , RNA, Messenger , Antibodies, Neutralizing , CD8-Positive T-Lymphocytes , mRNA Vaccines
9.
Circ Res ; 104(4): e30-41, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19213953

ABSTRACT

Human induced pluripotent stem (iPS) cells hold great promise for cardiovascular research and therapeutic applications, but the ability of human iPS cells to differentiate into functional cardiomyocytes has not yet been demonstrated. The aim of this study was to characterize the cardiac differentiation potential of human iPS cells generated using OCT4, SOX2, NANOG, and LIN28 transgenes compared to human embryonic stem (ES) cells. The iPS and ES cells were differentiated using the embryoid body (EB) method. The time course of developing contracting EBs was comparable for the iPS and ES cell lines, although the absolute percentages of contracting EBs differed. RT-PCR analyses of iPS and ES cell-derived cardiomyocytes demonstrated similar cardiac gene expression patterns. The pluripotency genes OCT4 and NANOG were downregulated with cardiac differentiation, but the downregulation was blunted in the iPS cell lines because of residual transgene expression. Proliferation of iPS and ES cell-derived cardiomyocytes based on 5-bromodeoxyuridine labeling was similar, and immunocytochemistry of isolated cardiomyocytes revealed indistinguishable sarcomeric organizations. Electrophysiology studies indicated that iPS cells have a capacity like ES cells for differentiation into nodal-, atrial-, and ventricular-like phenotypes based on action potential characteristics. Both iPS and ES cell-derived cardiomyocytes exhibited responsiveness to beta-adrenergic stimulation manifest by an increase in spontaneous rate and a decrease in action potential duration. We conclude that human iPS cells can differentiate into functional cardiomyocytes, and thus iPS cells are a viable option as an autologous cell source for cardiac repair and a powerful tool for cardiovascular research.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/physiology , Myocardial Contraction , Myocytes, Cardiac/physiology , Pluripotent Stem Cells/physiology , Action Potentials , Adrenergic beta-Agonists/pharmacology , Cell Differentiation/genetics , Cell Line , Cell Proliferation , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Isoproterenol/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Phenotype , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Sarcomeres/metabolism , Time Factors , Transduction, Genetic
10.
bioRxiv ; 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33948591

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing antibodies target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with HAd5 expressing the nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and k18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral antigens, even if they are not a target of neutralizing antibodies, to broaden epitope coverage and immune effector mechanisms.

11.
J Exp Med ; 217(8)2020 08 03.
Article in English | MEDLINE | ID: mdl-32568362

ABSTRACT

Numerous observations indicate that resident memory T cells (TRM) undergo unusually rapid attrition within the lung. Here we demonstrate that contraction of lung CD8+ T cell responses after influenza infection is contemporized with egress of CD69+/CD103+ CD8+ T cells to the draining mediastinal LN via the lymphatic vessels, which we term retrograde migration. Cells within the draining LN retained canonical markers of lung TRM, including CD103 and CD69, lacked Ly6C expression (also a feature of lung TRM), maintained granzyme B expression, and did not equilibrate among immunized parabiotic mice. Investigations of bystander infection or removal of the TCR from established memory cells revealed that the induction of the TRM phenotype was dependent on antigen recognition; however, maintenance was independent. Thus, local lung infection induces CD8+ T cells with a TRM phenotype that nevertheless undergo retrograde migration, yet remain durably committed to the residency program within the draining LN, where they provide longer-lived regional memory while chronicling previous upstream antigen experiences.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Movement/immunology , Immunologic Memory , Influenza A virus/immunology , Lung/immunology , Lymph Nodes/immunology , Orthomyxoviridae Infections/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Movement/genetics , Female , Lung/pathology , Lung/virology , Lymph Nodes/pathology , Male , Mice , Mice, Transgenic , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
12.
Sci Rep ; 7: 40720, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28094802

ABSTRACT

Given the rapid spread of flaviviruses such as West Nile virus (WNV) and Zika virus, it is critical that we develop a complete understanding of the key mediators of an effective anti-viral response. We previously demonstrated that WNV infection of mice deficient in mitochondrial antiviral-signaling protein (MAVS), the signaling adaptor for RNA helicases such as RIG-I, resulted in increased death and dysregulated immunity, which correlated with a failure of Treg expansion following infection. Thus, we sought to determine if intrinsic MAVS signaling is required for participation of Tregs in anti-WNV immunity. Despite evidence of increased Treg cell division, Foxp3 expression was not stably maintained after WNV infection in MAVS-deficient mice. However, intrinsic MAVS signaling was dispensable for Treg proliferation and suppressive capacity. Further, we observed generation of an effective anti-WNV immune response when Tregs lacked MAVS, thereby demonstrating that Treg detection of the presence of WNV through the MAVS signaling pathway is not required for generation of effective immunity. Together, these data suggest that while MAVS signaling has a considerable impact on Treg identity, this effect is not mediated by intrinsic MAVS signaling but rather is likely an effect of the overproduction of pro-inflammatory cytokines generated in MAVS-deficient mice after WNV infection.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Flavivirus Infections/immunology , Flavivirus Infections/metabolism , Flavivirus/physiology , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Acute Disease , Animals , Cytokines/metabolism , Disease Models, Animal , Down-Regulation , Flavivirus Infections/genetics , Flavivirus Infections/virology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression , Immunophenotyping , Lymphocyte Activation/immunology , Mice , Mice, Knockout , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , West Nile Fever , West Nile virus
13.
Biomaterials ; 31(7): 1885-93, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19945747

ABSTRACT

The differentiation of human embryonic stem cells (hESCs) into cardiomyocytes (CMs) using embryoid bodies (EBs) is relatively inefficient and highly variable. Formation of EBs using standard enzymatic disaggregation techniques results in a wide range of sizes and geometries of EBs. Use of a 3-D cuboidal microwell system to culture hESCs in colonies of defined dimensions, 100-500 microm in lateral dimensions and 120 microm in depth, enabled formation of more uniform-sized EBs. The 300 microm microwells produced highest percentage of contracting EBs, but flow cytometry for myosin light chain 2A (MLC2a) expressing cells revealed a similar percentage (approximately 3%) of cardiomyocytes formed in EBs from 100 microm to 300 microm microwells. These data, and immunolabeling with anti-MF20 and MLC2a, suggest that the smaller EBs are less likely to form contracting EBs, but those contracting EBs are relatively enriched in cardiomyocytes compared to larger EB sizes where CMs make up a proportionately smaller fraction of the total cells. We conclude that microwell-engineered EB size regulates cardiogenesis and can be used for more efficient and reproducible formation of hESC-CMs needed for research and therapeutic applications.


Subject(s)
Cell Differentiation , Cell Size , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Myocytes, Cardiac/cytology , Cell Count , Cell Line , Embryonic Stem Cells/metabolism , Flow Cytometry , Gene Expression Regulation, Developmental , Humans , Myocytes, Cardiac/metabolism , Myosin Light Chains/metabolism , Organogenesis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL