Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Mod Pathol ; 37(3): 100430, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266920

ABSTRACT

Cutaneous mixed tumors exhibit a wide morphologic diversity and are currently classified into apocrine and eccrine types based on their morphologic differentiation. Some cases of apocrine-type cutaneous mixed tumors (ACMT), namely, hyaline cell-rich apocrine cutaneous mixed tumors (HCR-ACMT) show a prominent or exclusive plasmacytoid myoepithelial component. Although recurrent fusions of PLAG1 have been observed in ACMT, the oncogenic driver of eccrine-type cutaneous mixed tumors (ECMT) is still unknown. The aim of the study was to provide a comprehensive morphologic, immunohistochemical, and molecular characterization of these tumors. Forty-one cases were included in this study: 28 cases of ACMT/HCR-ACMT and 13 cases of ECMT. After morphologic and immunohistochemical characterization, all specimens were analyzed by RNA sequencing. By immunohistochemistry, all cases showed expression of SOX10, but only ACMT/HCR-ACMT showed expression of PLAG1 and HMGA2. RNA sequencing confirmed the presence of recurrent fusion of PLAG1 or HMGA2 in all cases of ACMT/HCR-ACMT, with a perfect correlation with PLAG1/HMGA2 immunohistochemical status, and revealed internal tandem duplications of SOX10 (SOX10-ITD) in all cases of ECMT. Although TRPS1::PLAG1 was the most frequent fusion, HMGA2::WIF1 and HMGA2::NFIB were detected in ACMT cases. Clustering analysis based on gene expression profiling of 110 tumors, including numerous histotypes, showed that ECMT formed a distinct group compared with all other tumors. ACMT, HCR-ACMT, and salivary gland pleomorphic adenoma clustered together, whereas myoepithelioma with fusions of EWSR1, FUS, PBX1, PBX3, POU5F1, and KLF17 formed another cluster. Follow-up showed no evidence of disease in 23 cases across all 3 tumor types. In conclusion, our study demonstrated for the first time SOX10-ITD in ECMT and HMGA2 fusions in ACMT and further refined the prevalence of PLAG1 fusions in ACMT. Clustering analyses revealed the transcriptomic distance between these different tumors, especially in the heterogenous group of myoepitheliomas.


Subject(s)
Adenoma, Pleomorphic , Myoepithelioma , Salivary Gland Neoplasms , Skin Neoplasms , Sweat Gland Neoplasms , Humans , Adenoma, Pleomorphic/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Myoepithelioma/genetics , Myoepithelioma/pathology , Repressor Proteins , Salivary Gland Neoplasms/genetics , Skin Neoplasms/genetics , SOXE Transcription Factors , Sweat Gland Neoplasms/genetics , Transcription Factors
2.
Mod Pathol ; 37(11): 100586, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094735

ABSTRACT

Among skin epithelial tumors, recurrent mutations in the APC/CTNNB1 genes resulting in activation of the Wnt/ß-catenin pathway have been reported predominantly in neoplasms with matrical differentiation. In the present study, we describe the morphologic, immunohistochemical, and genetic features of 16 primary cutaneous carcinomas harboring mutations activating the Wnt/ß-catenin pathway without evidence of matrical differentiation, as well as 4 combined tumors in which a similar Wnt/ß-catenin-activated carcinoma component was associated with Merkel cell carcinoma (MCC) or pilomatrical carcinoma. Among the pure tumor cases, 6 of 16 patients were women with a median age of 80 years (range, 58-98 years). Tumors were located on the head and neck (n = 7, 44%), upper limb (n = 4, 25%), trunk (n = 3, 18%), and leg (n = 2, 13%). Metastatic spread was observed in 4 cases resulting in death from disease in 1 patient. Microscopically, all cases were poorly differentiated neoplasms infiltrating the dermis and/or subcutaneous tissue. In 13 cases, solid "squamoid" areas were associated with a basophilic component characterized by rosette/pseudoglandular formation resulting in a biphasic appearance. Three specimens consisted only of poorly differentiated carcinoma lacking rosette formation. Immunohistochemical studies showed frequent expression of EMA (100%), BerEP4 (100%), cytokeratin 7 (94%), chromogranin A (44%), synaptophysin (82%), and cytokeratin 20 (69%). Complete loss of Rb expression was observed in all but 1 case. Nuclear ß-catenin and CDX2 expressions were detected in all cases. Recurrent pathogenic somatic mutations were observed in APC (60%), CTNNB1 (40%), and RB1 (n = 47%). Global methylation analysis confirmed that cases with rosette formation constituted a homogeneous tumor group distinct from established skin tumor entities (pilomatrical carcinoma, MCC, and squamous cell carcinoma), although the 3 other cases lacking such morphologic features did not. In addition, we identified 4 combined neoplasms in which there was a component showing a similar poorly differentiated rosette-forming carcinoma demonstrating Rb loss and ß-catenin activation associated with either MCC (n = 3) or pilomatrical carcinoma (n = 1). In conclusion, we describe a distinctive neoplasm, for which we propose the term "Wnt/ß-catenin-activated rosette-forming carcinoma," morphologically characterized by the association of rosette formation, squamous and/or neuroendocrine differentiation, diffuse CDX2 expression, Rb loss, and mutations in CTNNB1/APC genes.

3.
Histopathology ; 84(2): 266-278, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37609771

ABSTRACT

Poroma is a benign sweat gland tumour showing morphological features recapitulating the superficial portion of the eccrine sweat coil. A subset of poromas may transform into porocarcinoma, its malignant counterpart. Poroma and porocarcinoma are characterised by recurrent gene fusions involving YAP1, a transcriptional co-activator, which is controlled by the Hippo signalling pathway. The fusion genes frequently involve MAML2 and NUTM1, which are also rearranged in other cutaneous and extracutaneous neoplasms. We aimed to review the clinical, morphological and molecular features of this category of adnexal neoplasms with a special focus upon emerging differential diagnoses, and discuss how their systematic molecular characterisation may contribute to a standardisation of diagnosis, more accurate classification and, ultimately, refinement of their prognosis and therapeutic modalities.


Subject(s)
Eccrine Porocarcinoma , Poroma , Skin Neoplasms , Sweat Gland Neoplasms , Humans , Poroma/genetics , Poroma/metabolism , Poroma/pathology , Eccrine Porocarcinoma/genetics , Eccrine Porocarcinoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Sweat Gland Neoplasms/diagnosis , Skin/pathology , Transcription Factors/genetics
4.
Histopathology ; 84(2): 356-368, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37830288

ABSTRACT

AIMS: Merkel cell carcinoma (MCC) is frequently caused by the Merkel cell polyomavirus (MCPyV). Characteristic for these virus-positive (VP) MCC is MCPyV integration into the host genome and truncation of the viral oncogene Large T antigen (LT), with full-length LT expression considered as incompatible with MCC growth. Genetic analysis of a VP-MCC/trichoblastoma combined tumour demonstrated that virus-driven MCC can arise from an epithelial cell. Here we describe two further cases of VP-MCC combined with an adnexal tumour, i.e. one trichoblastoma and one poroma. METHODS AND RESULTS: Whole-genome sequencing of MCC/trichoblastoma again provided evidence of a trichoblastoma-derived MCC. Although an MCC-typical LT-truncating mutation was detected, we could not determine an integration site and we additionally detected a wildtype sequence encoding full-length LT. Similarly, Sanger sequencing of the combined MCC/poroma revealed coding sequences for both truncated and full-length LT. Moreover, in situ RNA hybridization demonstrated expression of a late region mRNA encoding the viral capsid protein VP1 in both combined as well as in a few cases of pure MCC. CONCLUSION: The data presented here suggest the presence of wildtype MCPyV genomes and VP1 transcription in a subset of MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Poroma , Skin Neoplasms , Sweat Gland Neoplasms , Humans , Carcinoma, Merkel Cell/metabolism , Merkel cell polyomavirus/genetics , Polyomavirus Infections/complications , Skin Neoplasms/pathology , Genomics
5.
Br J Dermatol ; 190(2): 226-243, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37831592

ABSTRACT

BACKGROUND: Neurofibromatosis type 1 (NF1) is characterized by the highly variable and unpredictable development of benign peripheral nerve sheath tumours: cutaneous (cNFs), subcutaneous (scNFs) and plexiform (pNFs) neurofibromas. OBJECTIVES: To identify neurofibroma modifier genes, in order to develop a database of patients with NF1. METHODS: All patients were phenotypically evaluated by a medical practitioner using a standardized questionnaire and the causal NF1 variant identified. We enrolled 1333 patients with NF1 who were genotyped for > 7 million common variants. RESULTS: A genome-wide association case-only study identified a significant association with 9q21.33 in the pNF phenotype in the discovery cohort. Twelve, three and four regions suggestive of association at the P ≤ 1 × 10-6 threshold were identified for pNFs, cNFs and scNFs, respectively. Evidence of replication was observed for 4, 2 and 6 loci, including 168 candidate modifier protein-coding genes. Among the candidate modifier genes, some were implicated in the RAS-mitogen-activated protein kinase pathway, cell-cycle control and myelination. Using an original CRISPR/Cas9-based functional assay, we confirmed GAS1 and SPRED2 as pNF and scNF candidate modifiers, as their inactivation specifically affected NF1-mutant Schwann cell growth. CONCLUSIONS: Our study may shed new light on the pathogenesis of NF1-associated neurofibromas and will, hopefully, contribute to the development of personalized care for patients with this deleterious and life-threatening condition.


Subject(s)
Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Humans , Neurofibromatosis 1/genetics , Neurofibroma, Plexiform/complications , Neurofibroma, Plexiform/genetics , Genome-Wide Association Study , Neurofibroma/complications , Neurofibroma/genetics , Genotype , Repressor Proteins/genetics
6.
Mod Pathol ; 36(4): 100101, 2023 04.
Article in English | MEDLINE | ID: mdl-36788082

ABSTRACT

The accurate diagnosis of skin adnexal neoplasms is sometimes challenging but is necessary because medical management and follow-up may differ between tumors. GATA6 transcription factor has been identified as a new marker of the upper folliculosebaceous compartment (lower infundibulum, junctional zone and isthmus, and upper sebaceous gland) in the human skin. We aimed to determine the diagnostic accuracy of GATA6 immunostaining to diagnose sebaceous tumors compared with that to diagnose other adnexal and nonadnexal cutaneous neoplasms. We conducted a retrospective, evaluator-nonblinded study comparing the reference standard (diagnosis by an expert dermatopathologist) with GATA6 immunostaining to identify sebaceous tumors in a cohort containing 234 different tumors. The GATA6 expression score was significatively higher in sebaceous than that in nonsebaceous tumors. In addition, tumors originating from the upper hair follicle showed positive results for GATA6 staining; however, they showed lower GATA6 expression scores. Detection of sebaceous tumors using GATA6 positivity had a sensitivity of 95.7% (95% CI, 85.8-99.2), specificity of 80.8% (95% CI, 74.5-85.8), positive predictive value of 55.6% (95% CI, 44.7-65.9), and negative predictive value of 98.7% (95% CI, 95.4-99.8). GATA6 showed similar sensitivity to adipophilin, the reference marker; however, the specificity of GATA6 was higher, as observed in a cohort of 106 tumors enriched in squamous cell carcinomas with clear-cell histology. In addition, GATA6 positivity was assessed in 39 sebaceous carcinomas and compared with epithelial membrane antigen (EMA), CK7, and androgen receptor (AR) staining results. Although CK7 staining displayed lower diagnostic performances, GATA6 staining showed comparable results as EMA and AR. Finally, we found GATA6 expression in skin metastases of gastrointestinal origin, whereas GATA6 was absent in metastases originating from breast or lung cancers. Overall, our work identified GATA6 immunostaining as a new diagnostic tool for sebaceous tumors.


Subject(s)
Sebaceous Gland Neoplasms , Skin Neoplasms , Humans , Retrospective Studies , Sebaceous Gland Neoplasms/diagnosis , Skin/pathology , Skin Neoplasms/pathology , Sebaceous Glands/metabolism , Sebaceous Glands/pathology , GATA6 Transcription Factor
7.
Histopathology ; 83(2): 310-319, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37199682

ABSTRACT

AIMS: Poroma is a benign adnexal neoplasm with differentiation towards the upper portion of the sweat gland apparatus. In 2019, Sekine et al. demonstrated recurrent YAP1::MAML2 and YAP1::NUTM1 fusion in poroma and porocarcinoma. Follicular, sebaceous and/or apocrine differentiation has been reported in rare cases of poroma and whether these tumours constitute a variant of poroma or represent a distinctive tumour is a matter to debate. Herein we describe the clinical, immunophenotypic, and molecular features of 13 cases of poroma with folliculo-sebaceous differentiation. METHODS AND RESULTS: Most of the tumours were located on the head and neck region (n = 7), and on the thigh (n = 3). All presented were adults with a slight male predilection. The median tumour size was 10 mm (range: 4-25). Microscopically, lesions displayed features of poroma with nodules of monotonous basophilic cells associated with a second population of larger eosinophilic cells. In all cases, ducts and scattered sebocytes were identified. Infundibular cysts were present in 10 cases. In two cases high mitotic activity was noted, and in three cases cytologic atypia and areas of necrosis were identified. Whole transcriptome RNA sequencing demonstrated in-frame fusion transcripts involving RNF13::PAK2 (n = 4), EPHB3::PAK2 (n = 2), DLG1::PAK2 (n = 2), LRIG1::PAK2 (n = 1), ATP1B3::PAK2 (n = 1), TM9SF4::PAK2 (n = 1), and CTNNA1::PAK2 (n = 1). Moreover, fluorescence in situ hybridisation (FISH) analysis revealed PAK2 rearrangement in an additional case. No YAP1::MAML2 or YAP1::NUTM1 fusion was detected. CONCLUSION: Recurrent fusions involving the PAK2 gene in all analysed poroma with folliculo-sebaceous differentiation in this study confirms that this neoplasm represents a separate tumour entity distinct from YAP1::MAML2 or YAP1::NUTM1 rearranged poromas.


Subject(s)
Poroma , Sweat Gland Neoplasms , Male , Humans , Poroma/genetics , Poroma/pathology , Transcription Factors , Sweat Gland Neoplasms/genetics , Sweat Gland Neoplasms/pathology , Cell Differentiation , p21-Activated Kinases , Sodium-Potassium-Exchanging ATPase , Membrane Proteins
8.
Histopathology ; 82(6): 885-898, 2023 May.
Article in English | MEDLINE | ID: mdl-36720791

ABSTRACT

AIMS: Recently, YAP1 fusion genes have been demonstrated in eccrine poroma and porocarcinoma, and the diagnostic use of YAP1 immunohistochemistry has been highlighted in this setting. In other organs, loss of YAP1 expression can reflect YAP1 rearrangement or transcriptional repression, notably through RB1 inactivation. In this context, our objective was to re-evaluate the performance of YAP1 immunohistochemistry for the diagnosis of poroma and porocarcinoma. METHODS AND RESULTS: The expression of the C-terminal part of the YAP1 protein was evaluated by immunohistochemistry in 543 cutaneous epithelial tumours, including 27 poromas, 14 porocarcinomas and 502 other cutaneous tumours. Tumours that showed a lack of expression of YAP1 were further investigated for Rb by immunohistochemistry and for fusion transcripts by real-time PCR (YAP1::MAML2 and YAP1::NUTM1). The absence of YAP1 expression was observed in 24 cases of poroma (89%), 10 porocarcinoma (72%), 162 Merkel cell carcinoma (98%), 14 squamous cell carcinoma (SCC) (15%), one trichoblastoma and one sebaceoma. Fusions of YAP1 were detected in only 16 cases of poroma (n = 66%), 10 porocarcinoma (71%) all lacking YAP1 expression, and in one sebaceoma. The loss of Rb expression was detected in all cases except one of YAP1-deficient SCC (n = 14), such tumours showing significant morphological overlap with porocarcinoma. In-vitro experiments in HaCat cells showed that RB1 knockdown resulted in repression of YAP1 protein expression. CONCLUSION: In addition to gene fusion, we report that transcriptional repression of YAP1 can be observed in skin tumours with RB1 inactivation, including MCC and a subset of SCC.


Subject(s)
Carcinoma , Eccrine Porocarcinoma , Poroma , Skin Neoplasms , Sweat Gland Neoplasms , Humans , Poroma/genetics , Poroma/metabolism , Poroma/pathology , Sweat Gland Neoplasms/diagnosis , Eccrine Porocarcinoma/genetics , Eccrine Porocarcinoma/pathology , Skin Neoplasms/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Retinoblastoma Binding Proteins/metabolism
9.
J Pathol ; 257(1): 96-108, 2022 05.
Article in English | MEDLINE | ID: mdl-35049062

ABSTRACT

We report 21 cases of trichogerminoma harbouring previously undescribed FOXK1::GRHL1/2 or GPS2::GRHL1/2/3 in-frame fusion transcripts. Microscopic examination of a preliminary set of five cases revealed well-delimitated tumours located in the dermis with frequent extension to the subcutaneous tissue. Tumours presented a massive and nodular architecture and consisted of a proliferation of basaloid cells. A biphasic pattern sometime resulting in tumour cell nests ('cell balls') was present. Immunohistochemistry demonstrated the expression of cytokeratins (CKs) 15, 17, and PHLDA1. In addition, numerous CK20-positive Merkel cells were detected. RNA sequencing (RNA-seq) revealed a FOXK1::GRHL1 chimeric transcript in three cases and a FOXK1::GRHL2 fusion in two cases. In a second series for validation (n = 88), FOXK1::GRHL1/2 fusion transcripts were detected by RT-qPCR or FISH in an additional 12 trichogerminomas and not in any other follicular tumour entities or basal cell carcinoma cases (n = 66). Additional RNA-seq analysis in trichogerminoma cases without detected FOXK1::GRHL1/2 rearrangements revealed GPS2::GRHL1 fusion transcripts in two cases, GPS2::GRHL2 in one case, and GPS2::GRHL3 fusion transcript in one case. Therefore, our study strongly suggests that GRHL1/2/3 gene rearrangements might represent the oncogenic driver in trichogerminoma, a subset of follicular tumours characterized by immature features and numerous Merkel cells. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Skin Neoplasms , Forkhead Transcription Factors/genetics , Gene Rearrangement , Humans , Immunohistochemistry , Skin Neoplasms/genetics , Skin Neoplasms/pathology , United Kingdom
10.
Br J Dermatol ; 187(4): 615-617, 2022 10.
Article in English | MEDLINE | ID: mdl-35653233

ABSTRACT

The two clinico-pathological patterns are 'Sweet-like syndrome' and 'Multiple COVID-Arm'. 'Sweet-like syndrome' presents clinically as erythematous and oedematous papules or plaques, sometimes developing vesiculation or bullae. Histology shows classical Sweet syndrome with a diffuse dermal neutrophilic infiltrate, or an infiltrate of histiocyte-like immature myeloid cells consistent with a histiocytoid Sweet syndrome. 'Multiple COVID-arm' is characterized by multiple large inflammatory plaques with histological analyses showing a perivascular and interstitial inflammatory infiltrate with eosinophils.


Subject(s)
COVID-19 , Sweet Syndrome , Arm/pathology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Histiocytes/pathology , Humans , Sweet Syndrome/diagnosis , Sweet Syndrome/etiology , Sweet Syndrome/pathology
11.
J Pathol ; 250(3): 251-261, 2020 03.
Article in English | MEDLINE | ID: mdl-31729028

ABSTRACT

Traditional serrated adenoma (TSA) remains the least understood of all the colorectal adenomas, although these lesions have been associated with a significant cancer risk, twice that of the conventional adenoma (CAD) and of the sessile serrated adenoma (SSA/P). This study was performed to investigate the proteomic profiles of the different colorectal adenomas to better understand the pathogenesis of TSA. We performed a global quantitative proteome analysis using the label-free quantification (LFQ) method on 44 colorectal adenoma (12 TSAs, 15 CADs, and 17 SSA/Ps) and 17 normal colonic mucosa samples, archived as formalin-fixed paraffin-embedded blocks. Unsupervised consensus hierarchical clustering applied to the whole proteomic profile of the 44 colorectal adenomas identified four subtypes: C1 and C2 were well-individualized clusters composed of all the CADs (15/15) and most of the SSA/Ps (13/17), respectively. This is consistent with the fact that CADs and SSA/Ps are homogeneous and distinct colorectal adenoma entities. In contrast, TSAs were subdivided into C3 and C4 clusters, consistent with the more heterogeneous entity of TSA at the morphologic and molecular levels. Comparison of the proteome expression profile between the adenoma subtypes and normal colonic mucosa further confirmed the heterogeneous nature of TSAs, which overlapped either on CADs or SSA/Ps, whereas CADs and SSAs formed homogeneous and distinct entities. Furthermore, we identified LEFTY1 a new potential marker for TSAs that may be relevant for the pathogenesis of TSA. LEFTY1 is an inhibitor of the Nodal/TGFß pathway, which we found to be one of the most overexpressed proteins specifically in TSAs. This finding was confirmed by immunohistochemistry. Our study confirms that CADs and SSA/Ps form homogeneous and distinct colorectal adenoma entities, whereas TSAs are a heterogeneous entity and may arise from either SSA/Ps or from normal mucosa evolving through a process related to the CAD pathway. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenoma/metabolism , Colon/metabolism , Colorectal Neoplasms/metabolism , Proteome , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Colon/pathology , Colorectal Neoplasms/pathology , Female , Humans , Immunohistochemistry , Male , Mass Spectrometry , Middle Aged , Paraffin Embedding , Proteomics
12.
J Hepatol ; 68(6): 1203-1213, 2018 06.
Article in English | MEDLINE | ID: mdl-29525529

ABSTRACT

BACKGROUND & AIMS: The Wnt/ß-catenin pathway is the most frequently deregulated pathway in hepatocellular carcinoma (HCC). Inactivating mutations of the gene encoding AXIN1, a known negative regulator of the Wnt/ß-catenin signaling pathway, are observed in about 10% of HCCs. Whole-genome studies usually place HCC with AXIN1 mutations and CTNNB1 mutations in the group of tumors with Wnt/ß-catenin activated program. However, it has been shown that HCCs with activating CTNNB1 mutations form a group of HCCs, with a different histology, prognosis and genomic signature to those with inactivating biallelic AXIN1 mutations. We aimed to elucidate the relationship between CTNNB1 mutations, AXIN1 mutations and the activation level of the Wnt/ß-catenin program. METHODS: We evaluated two independent human HCC datasets for the expression of a 23-ß-catenin target genes program. We modeled Axin1 loss of function tumorigenesis in two engineered mouse models and performed gene expression profiling. RESULTS: Based on gene expression, we defined three levels of ß-catenin program activation: strong, weak or no activation. While more than 80% CTNNB1-mutated tumors were found in the strong or in the weak activation program, most of the AXIN1-mutated tumors (>70%) were found in the subgroup with no activation. We validated this result by demonstrating that mice with a hepatocyte specific AXIN1 deletion developed HCC in the absence of ß-catenin induction. We defined a 329-gene signature common in human and mouse AXIN1 mutated HCC that is highly enriched in Notch and YAP oncogenic signatures. CONCLUSIONS: AXIN1-mutated HCCs occur independently of the Wnt/ß-catenin pathway and involve Notch and YAP pathways. These pathways constitute potentially interesting targets for the treatment of HCC caused by AXIN1 mutations. LAY SUMMARY: Liver cancer has a poor prognosis. Defining the molecular pathways involved is important for developing new therapeutic approaches. The Wnt/ß-catenin pathway is the most frequently deregulated pathway in hepatocellular carcinoma (HCC). Mutations of AXIN1, a member of this pathway, represent about 10% of HCC mutations. Using both human HCC collections and engineered mouse models of liver cancers with AXIN1 mutation or deletion, we defined a common signature of liver tumors mutated for AXIN1 and demonstrate that these tumors occur independently of the activation of the Wnt/ß-catenin pathway.


Subject(s)
Axin Protein/deficiency , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Animals , Axin Protein/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/genetics , Hepatocytes/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Male , Mice , Mice, Knockout , Mutation , Prognosis , Receptors, Notch/genetics , Receptors, Notch/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
16.
Genes Chromosomes Cancer ; 56(5): 421-426, 2017 05.
Article in English | MEDLINE | ID: mdl-28124441

ABSTRACT

The commonest tumors associated with neurofibromatosis type 1 (NF1) are benign peripheral nerve sheath tumors, called neurofibromas. Malignant transformation of neurofibromas into aggressive MPNSTs may occur with a poor patient prognosis. A cooperative role of SUZ12 or EED inactivation, along with NF1, TP53, and CDKN2A loss-of-function, has been proposed to drive progression to MPNSTs. An exome sequencing analysis of eight MPNSTs, one plexiform neurofibroma, and seven cutaneous neurofibromas was undertaken. Biallelic inactivation of the NF1 gene was observed in the plexiform neurofibroma and the MPNSTs, underlining that somatic biallelic NF1 inactivation is likely to be the initiating event for plexiform neurofibroma genesis, although it is unlikely to be sufficient for the subsequent MPNST development. The majority (5/8) of MPNSTs in our analyses demonstrated homozygous or heterozygous deletions of CDKN2A, which may represent an early event following NF1 LOH in the malignant transformation of Schwann cells from plexiform neurofibroma to MPNST. Biallelic somatic alterations of SUZ12 was also found in 4/8 MPNSTs. EED biallelic alterations were detected in 2 of the other four MPNSTs, with one tumor having a homozygous EED deletion. A missense mutation in the chromatin regulator KDM2B was also identified in one MPNST. No TP53 point mutations were found in this study, confirming previous data that TP53 mutations may be relatively rare in NF1-associated MPNSTs. Our study confirms the frequent biallelic inactivation of PRC2 subunits SUZ12 and EED in MPNSTs, and suggests the implication of KDM2B.


Subject(s)
Biomarkers, Tumor/genetics , Mutation/genetics , Nerve Sheath Neoplasms/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , F-Box Proteins/genetics , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Neoplasm Proteins , Neoplasm Staging , Polycomb Repressive Complex 2/genetics , Prognosis , Transcription Factors
20.
Ann Pathol ; 41(3): 330-332, 2021 Jun.
Article in French | MEDLINE | ID: mdl-33902964

Subject(s)
Skin Neoplasms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL