Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Ann Bot ; 127(7): 865-873, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33556168

ABSTRACT

BACKGROUND AND AIMS: Herbaria were recently advertised as reliable sources of information regarding historical changes in plant traits and biotic interactions. To justify the use of herbaria in global change research, we asked whether the characteristics of herbarium specimens have changed during the past centuries and whether these changes were due to shifts in plant collection practices. METHODS: We measured nine characteristics from 515 herbarium specimens of common European trees and large shrubs collected from 1558 to 2016. We asked botanists to rank these specimens by their scientific quality, and asked artists to rank these specimens by their beauty. KEY RESULTS: Eight of 11 assessed characteristics of herbarium specimens changed significantly during the study period. The average number of leaves in plant specimens increased 3-fold, whereas the quality of specimen preparation decreased. Leaf size negatively correlated with leaf number in specimens in both among-species and within-species analyses. The proportion of herbarium sheets containing plant reproductive structures peaked in the 1850s. The scientific value of herbarium specimens increased until the 1700s, but then did not change, whereas their aesthetic value showed no systematic trends. CONCLUSIONS: Our findings strongly support the hypothesis that many characteristics of herbarium specimens have changed systematically and substantially from the 16th to 21st centuries due to changes in plant collection and preservation practices. These changes may both create patterns which could be erroneously attributed to environmental changes and obscure historical trends in plant traits. The utmost care ought to be taken to guard against the possibility of misinterpretation of data obtained from herbarium specimens. We recommend that directional changes in characters of herbarium specimens which occurred during the past 150‒200 years, primarily in specimen size and in the presence of reproductive structures, are accounted for when searching for the effects of past environmental changes on plant traits.


Subject(s)
Plants , Trees , Plant Leaves
2.
Stem Cells Dev ; 32(13-14): 387-397, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37166357

ABSTRACT

Transplantation of human induced pluripotent stem cell-derived dopaminergic (iPSC-DA) neurons is a promising therapeutic strategy for Parkinson's disease (PD). To assess optimal cell characteristics and reproducibility, we evaluated the efficacy of iPSC-DA neuron precursors from two individuals with sporadic PD by transplantation into a hemiparkinsonian rat model after differentiation for either 18 (d18) or 25 days (d25). We found similar graft size and dopamine (DA) neuron content in both groups, but only the d18 cells resulted in recovery of motor impairments. In contrast, we report that d25 grafts survived equally as well and produced grafts rich in tyrosine hydroxylase-positive neurons, but were incapable of alleviating any motor deficits. We identified the mechanism of action as the extent of neurite outgrowth into the host brain, with d18 grafts supporting significantly more neurite outgrowth than nonfunctional d25 grafts. RNAseq analysis of the cell preparation suggests that graft efficacy may be enhanced by repression of differentiation-associated genes by REST, defining the optimal predifferentiation state for transplantation. This study demonstrates for the first time that DA neuron grafts can survive well in vivo while completely lacking the capacity to induce recovery from motor dysfunction. In contrast to other recent studies, we demonstrate that neurite outgrowth is the key factor determining graft efficacy and our gene expression profiling revealed characteristics of the cells that may predict their efficacy. These data have implication for the generation of DA neuron grafts for clinical application.


Subject(s)
Dopaminergic Neurons , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Transcriptome , Reproducibility of Results , Cell Differentiation/physiology , Neuronal Outgrowth
3.
Sci Rep ; 10(1): 12298, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32704145

ABSTRACT

Information regarding plant damage by insects in the past is essential to explore impacts of climate change on herbivory. We asked whether insect herbivory measured from herbarium specimens reflects the levels of herbivory occurring in nature at the time of herbarium sampling. We compared herbivory measurements between herbarium specimens collected by botany students and ecological samples collected simultaneously by the authors by a method that minimized unconscious biases, and asked herbarium curators to select one of two plant specimens, which differed in leaf damage, for their collections. Both collectors and curators generally preferred specimens with lesser leaf damage, but the strength of this preference varied among persons. In addition, the differences in measured leaf damage between ecological samples and herbarium specimens varied among plant species and increased with the increase in field herbivory. Consequently, leaf damage in herbarium specimens did not correlate with the actual level of herbivory. We conclude that studies of herbarium specimens produce biased information on past levels of herbivory, because leaf damage measured from herbarium specimens not only underestimates field herbivory, but it is not proportional to the level of damage occurring in nature due to multiple factors that cannot be controlled in data analysis.


Subject(s)
Herbivory , Insecta , Plants , Animals , Climate Change , Ecosystem , Forests , Plant Leaves , Wood
4.
Brain Res ; 1724: 146431, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31491420

ABSTRACT

The hippocampus is involved in key neuronal circuits that underlie cognition, memory, and anxiety, and it is increasingly recognized as a vulnerable structure that contributes to the pathogenesis of HIV-associated neurocognitive disorder (HAND). However, the mechanisms responsible for hippocampal dysfunction in neuroHIV remain unknown. The present study used HIV transgenic (Tg) rats and patch-clamp electrophysiological techniques to study the effects of the chronic low-level expression of HIV proteins on hippocampal CA1 pyramidal neurons. The dorsal and ventral areas of the hippocampus are involved in different neurocircuits and thus were evaluated separately. We found a significant decrease in the intrinsic excitability of CA1 neurons in the dorsal hippocampus in HIV Tg rats by comparing neuronal spiking induced by current step injections and by dynamic clamp to simulate neuronal spiking activity. The decrease in excitability in the dorsal hippocampus was accompanied by a higher rate of excitatory postsynaptic currents (EPSCs), whereas CA1 pyramidal neurons in the ventral hippocampus in HIV Tg rats had higher EPSC amplitudes. We also observed a reduction of hyperpolarization-activated nonspecific cationic current (Ih) in both the dorsal and ventral hippocampus. Neurotoxic HIV proteins have been shown to increase neuronal excitation. The lower excitability of CA1 pyramidal neurons that was observed herein may represent maladaptive homeostatic plasticity that seeks to stabilize baseline neuronal firing activity but may disrupt neural network function and contribute to HIV-associated neuropsychological disorders, such as HAND and depression.


Subject(s)
AIDS Dementia Complex/physiopathology , CA1 Region, Hippocampal/metabolism , HIV Infections/physiopathology , Animals , Excitatory Postsynaptic Potentials/physiology , Female , HIV/pathogenicity , HIV Infections/metabolism , Hippocampus/metabolism , Memory , Neurons/drug effects , Patch-Clamp Techniques/methods , Pyramidal Cells/physiology , Rats , Rats, Transgenic , Rats, Wistar
5.
Radiat Res ; 183(2): 208-18, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25621896

ABSTRACT

High-energy protons constitute at least 85% of the fluence of energetic ions in interplanetary space. Although protons are only sparsely ionizing compared to higher atomic mass ions, they nevertheless significantly contribute to the delivered dose received by astronauts that can potentially affect central nervous system function at high fluence, especially during prolonged deep space missions such as to Mars. Here we report on the long-term effects of 1 Gy proton irradiation on electrophysiological properties of CA1 pyramidal neurons in the mouse hippocampus. The hippocampus is a key structure for the formation of long-term episodic memory, for spatial orientation and for information processing in a number of other cognitive tasks. CA1 pyramidal neurons form the last and critical relay point in the trisynaptic circuit of the hippocampal principal neurons through which information is processed before being transferred to other brain areas. Proper functioning of CA1 pyramidal neurons is crucial for hippocampus-dependent tasks. Using the patch-clamp technique to evaluate chronic effects of 1 Gy proton irradiation on CA1 pyramidal neurons, we found that the intrinsic membrane properties of CA1 pyramidal neurons were chronically altered at 3 months postirradiation, resulting in a hyperpolarization of the resting membrane potential (VRMP) and a decrease in input resistance (Rin). These small but significant alterations in intrinsic properties decreased the excitability of CA1 pyramidal neurons, and had a dramatic impact on network function in a computational model of the CA1 microcircuit. We also found that proton-radiation exposure upregulated the persistent Na(+) current (INaP) and increased the rate of miniature excitatory postsynaptic currents (mEPSCs). Both the INaP and the heightened rate of mEPSCs contribute to neuronal depolarization and excitation, and at least in part, could compensate for the reduced excitability resulting from the radiation effects on the VRMP and the Rin. These results show long-term alterations in the intrinsic properties of CA1 pyramidal cells after realistic, low-dose proton irradiation.


Subject(s)
CA1 Region, Hippocampal/physiology , Membrane Potentials/physiology , Models, Neurological , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology , Adaptation, Physiological/physiology , Adaptation, Physiological/radiation effects , Animals , CA1 Region, Hippocampal/radiation effects , Computer Simulation , Dose-Response Relationship, Radiation , Male , Membrane Potentials/radiation effects , Mice , Mice, Inbred C57BL , Neuronal Plasticity/radiation effects , Protons , Radiation Dosage , Synapses/radiation effects , Synaptic Transmission/radiation effects , Whole-Body Irradiation
6.
Cell Commun Adhes ; 9(2): 75-86, 2002.
Article in English | MEDLINE | ID: mdl-12487409

ABSTRACT

In an attempt to compare the regulation of chick connexin43 channels to those of mammalian connexin43, we found that the nucleotide sequence reported for chick connexin43 differs from that of the chick connexin gene by two codons that had been entered as histidine49 (H49) and valine50 (V50) (accession no. M29003), but are in fact glutamine49 (Q49) and serine50 (S50). Neuro2A cells were transfected with corrected wild-type (Q49/S50) chick connexin43 (accession no. AF233738), the double-replacement Q49H/S50V connexin43, or the single replacement of Q49H or S50V. All clones had gap junctions in membrane based on immunocytochemistry and immunoblots of the triton-resistant membrane fraction. Wild-type transfectants had three conductance states with a predominant channel conductance of 85 +/- 5 pS. Cells producing the Q49H-Cx43 or the double-replacement Q49H/S50V-Cx43 protein had no detectable connexin43 channels. In contrast, cells expressing S50V-Cx43 gap junctions had channels with reduced conductances (75 +/- 8 pS) compared to wild-type controls. Low or high pH of the bathing solution had no effect on the Q49H-Cx43 channels. We conclude that glutamine49 is important for channel function, and replacement of this residue with histidine most likely distorts secondary structure of the first extracellular loop, possibly by changing the orientation of conserved cysteines, and this inhibits channel function. The S50V substitution may also cause similar but less severe structural changes.


Subject(s)
Cell Communication/physiology , Connexin 43/metabolism , Eukaryotic Cells/metabolism , Gap Junctions/metabolism , Glutamine/metabolism , Serine/metabolism , Amino Acid Sequence/genetics , Animals , Base Sequence/genetics , Chick Embryo , Connexin 43/genetics , Gap Junctions/genetics , Glutamine/genetics , Histidine/genetics , Histidine/metabolism , Hydrogen-Ion Concentration , Immunohistochemistry , Membrane Potentials/genetics , Mice , Molecular Sequence Data , Mutation/genetics , Protein Structure, Tertiary/genetics , Sequence Homology, Amino Acid , Serine/genetics , Transfection , Tumor Cells, Cultured
7.
Radiat Res ; 181(4): 407-15, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24625098

ABSTRACT

An unavoidable complication of space travel is exposure to radiation consisting of high-energy charged particles (HZE), such as Fe and Si nuclei. HZE radiation can affect neuronal functions at the level of the synapse or neuronal soma without inducing significant neuronal death. Different radiation species impart distinct patterns of radiation damage depending on their track structure, dose rate and fluence. Moreover, structural differences exist along the dorsoventral axis of the hippocampus that may underlie different radiosensitivities within the same neuronal field (e.g., the CA1 pyramidal cell population of the hippocampus). In this study we tested the functional effects of low doses of (28)Si radiation on excitability and synaptic plasticity in hippocampal slices prepared strictly from the ventral hippocampus. We used extracellular electrophysiological techniques to record field excitatory postsynaptic potentials (EPSPs) and population spikes in hippocampal CA1 neurons from C57BL/6J male mice 3 months after exposure to (28)Si radiation (600 MeV/n; 0.25 and 1 Gy, whole body). In irradiated mice we found prominent decrements in population spike amplitudes and reduced maximal neuronal output without changes in dendritic field EPSP. Reduced field EPSP vs. population spike ratios indicate radiation-induced impairment of the EPSP-spike (E-S) coupling. This effect was not associated with significant changes in the magnitude of short- and long-term synaptic plasticity [long-term potentiation (LTP)]. These data confirm that irradiation with (28)Si particles at relatively low doses alters the properties of the hippocampal network, which can limit its connectivity with other brain centers.


Subject(s)
CA1 Region, Hippocampal/radiation effects , Neurons/radiation effects , Radioisotopes/pharmacology , Silicon/pharmacology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , Dendrites/drug effects , Dendrites/physiology , Dendrites/radiation effects , Excitatory Postsynaptic Potentials , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects
8.
J Neurophysiol ; 100(2): 690-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18509070

ABSTRACT

Silencing-induced homeostatic plasticity is usually expressed as a change in the amplitude or the frequency of miniature postsynaptic currents. Here we report that, prolonged (approximately 24 h) silencing of mature (20-22 days in vitro) cultured hippocampal neurons using the voltage-gated sodium channel blocker tetrodotoxin (TTX) produced no effects on the amplitude or frequency of the miniature excitatory postsynaptic currents (mEPSCs). However, the silencing changed the intrinsic membrane properties of the neurons, resulting in an increased excitability and rate of action potentials firing upon TTX washout. Allowing neurons to recover in TTX-free recording solution for a short period of time after the silencing resulted in potentiation of mEPSC amplitudes. This form of activity-dependent potentiation is different from classical long-term potentiation, as similar potentiation was not seen in nonsilenced neurons treated with bicuculline to raise their spiking activity to the same level displayed by the silenced neurons during TTX washout. Also, the potentiation of mEPSC amplitudes after the recovery period was not affected by the N-methyl-d-aspartate receptor blocker d-2-amino-5-phosponopentanoic acid or by the calcium/calmodulin-dependent kinase II (CaMKII) inhibitor KN-62 but was abolished by the L-type calcium channel blocker nifedipine. We thus conclude that the potentiation of mEPSC amplitudes following brief recovery of spiking activity in chronically silenced neurons represents a novel form of metaplasticity that differs from the conventional models of homeostatic synaptic plasticity.


Subject(s)
Action Potentials/physiology , Hippocampus/cytology , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Neurons/physiology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Action Potentials/drug effects , Analysis of Variance , Animals , Calcium Channel Blockers/pharmacology , Cells, Cultured , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Mice , Mice, Inbred C57BL , Neural Inhibition/drug effects , Neuronal Plasticity/drug effects , Neurons/drug effects , Nifedipine/pharmacology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Time Factors , Valine/analogs & derivatives , Valine/pharmacology
9.
J Neurophysiol ; 95(4): 2570-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16394076

ABSTRACT

It has been demonstrated that stimulation of protein kinase A (PKA) results in enhanced synaptic transmission in the hippocampus and other brain areas. To investigate mechanisms of the PKA-mediated potentiation of synaptic transmission, we used rat hippocampal embryonic cultures. In low-density cultures, paired recordings under the perforated patch demonstrated that 15-min forskolin treatment produced long-lasting potentiation of evoked excitatory postsynaptic currents (eEPSCs) mediated by the cAMP/PKA pathway. eEPSC amplitudes increased to 240 +/- 10% of baseline after 15 min of forskolin treatment (early). After forskolin washout, eEPSCs declined to a potentiated level. Potentiation was sustained for > or = 85 min after forskolin washout and, 60 min after forskolin washout, constituted 152 +/- 7% of baseline (late potentiation). Disruption of presynaptic processes with the whole cell configuration and internal solution containing PKA inhibitor peptide did not affect forskolin-induced potentiation. Disruption of postsynaptic processes, in contrast, impaired early potentiation and abolished late potentiation. Study of mEPSCs confirmed the contribution of postsynaptic mechanisms. Forskolin-induced enhancement of mEPSC frequency observed under the perforated patch was attenuated by the whole cell configuration. Forskolin also induced an increase of mEPSC amplitudes in the perforated patch, but not in the whole cell, experiments. Potentiation of eEPSCs was not activity dependent, persisting in the absence of stimulation. NMDA receptor blockade did not abolish forskolin-induced potentiation. In summary, we demonstrate that forskolin-induced potentiation of eEPSCs was mediated by postsynaptic mechanisms, presumably by upregulation of AMPA receptors by phosphorylation.


Subject(s)
Colforsin/pharmacology , Excitatory Postsynaptic Potentials/physiology , Synaptic Transmission , Animals , Blotting, Western , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Electrophysiology , Hippocampus/cytology , Hippocampus/embryology , Hippocampus/physiology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synaptic Transmission/drug effects , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL