Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Res ; 197: 111181, 2021 06.
Article in English | MEDLINE | ID: mdl-33878319

ABSTRACT

This study aimed to investigate the sequestration of phenolic endocrine disrupting compounds (EDCs) such as bisphenol A (BPA), 4-t-octylphenol (4-t-OP), and 4-nonylphenol (4-NP) in the shells of the mature clam Rangia cuneata from the Vistula Lagoon (southern Baltic Sea) and to determine the influence of sex and shell length on bioaccumulation of these contaminants. Even though there is broad interest in EDCs influences on aquatic organisms, these basic parameters are poorly understood, yet necessary for assessing environmental risks for clams. Average proportions of the total body burden (ng/individual) deposited in shells of R. cuneata were more than 70% for BPA and 4-NP and up to 32% for 4-t-OP. These results indicate that shell storage can be an important route for elimination of specific EDCs. Relationships between EDCs concentrations and the size and sex of R. cuneata indicate that females and large individuals experience greater exposures to the adverse effects of these pollutants than males and smaller clams. This effect could have significant impacts on population ecology and ultimately affect the entire ecosystem, in which bivalves play an important role. In the context of using clams to assess water pollution, the co-variation of EDCs concentrations with the size and sex of bivalves could influence the quality of monitoring data, unless accounted for in sampling design and data analysis.


Subject(s)
Bivalvia , Endocrine Disruptors , Water Pollutants, Chemical , Animals , Benzhydryl Compounds/analysis , Benzhydryl Compounds/toxicity , Bioaccumulation , Ecosystem , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Environmental Monitoring , Female , Humans , Male , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Arch Environ Contam Toxicol ; 67(3): 335-47, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24752748

ABSTRACT

The organic derivatives of phenol are classed as dangerous compounds, and their presence has been detected in surface water, bottom water, phytoplankton, zooplankton, and mussel as well as liver and muscle of fish from the Gulf of Gdansk and in liver, muscle, and guano of gulls residing in the coastal zone of this basin. The greatest sources of bisphenol A (BPA), 4-tert-octylphenol (OP), and 4-nonylphenol (NP) were found to be the Vistula River and the water purification plant in Debogórze. In living organisms, concentrations of BPA, OP, and NP ranged between the limit of quantification and several hundred ng g(-1) dry weight (dw), and the highest concentrations were found for BPA. Prolonged alimentary exposure to BPA, OP, and NP in fish and birds was indicated by liver/muscle concentration ratios generally >1. The most influential factors on BPA and alkylphenol concentrations in the tissues of fishes and gulls were mainly diet and habitat. The study confirmed possible bioaccumulation in the food web. High BPA and NP concentrations in guano (≤2,700 and ≤300 ng g(-1) dw, respectively) indicated the ability of birds to detoxify and signalled the reintroduction of these compounds to seawater. Herring, flounder, and cod from the Southern Baltic are a safe food source for human consumption because their BPA and alkylphenol contents are low.


Subject(s)
Benzhydryl Compounds/analysis , Endocrine Disruptors/analysis , Environmental Monitoring , Phenols/analysis , Water Pollutants, Chemical/analysis , Animals , Benzhydryl Compounds/metabolism , Bivalvia/metabolism , Endocrine Disruptors/metabolism , Fishes/metabolism , Phenols/metabolism , Seawater/chemistry , Water Pollutants, Chemical/metabolism
3.
Environ Pollut ; 361: 124838, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214444

ABSTRACT

Pharmaceuticals, stimulants, and biocides enter the environment via wastewater from urban, domestic, and industrial areas, in addition to sewage, aquaculture and agriculture runoff. While some of these compounds are easily degradable in environmental conditions, others are more persistent, meaning they are less easily degraded and can stay in the environment for long periods of time. By exploring the adsorptive properties of a wide range of pharmaceuticals, stimulants, and biocides onto particles relevant for marine conditions, we can better understand their environmental behaviour and transport potential. Here, the sorption of 27 such compounds to inorganic (kaolin) and biotic (the microalgae Cryptomonas baltica) marine particles was investigated. Only two compounds sorbed to microalgae, while 23 sorbed to kaolin. The sorption mechanisms between select pharmaceuticals and stimulants and kaolin was assessed through exploring adsorption kinetics (caffeine, ciprofloxacin, citalopram, fluoxetine, and oxolinic acid) and isotherms (ciprofloxacin, citalopram, and fluoxetine). Temperature was shown to have a significant impact on partitioning, and the impact was more pronounced closer to maximum sorption capacity for the individual compounds.

4.
Chemosphere ; 364: 143172, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182731

ABSTRACT

Pharmaceuticals have been deemed as 'contaminants of emerging concern' within the Arctic and are a potentially perennial form of pollution. With recent innovations in detection technology for organic compounds, researchers have been able to find substantial evidence of the presence and accumulation of pharmaceutical pollution within the Arctic marine ecosystem. The pharmaceuticals, which are biologically active substances used in diagnosis, treatment or prevention of diseases, may persist in the Arctic environment and may have an impact on the resident marine biota. Thus, to understand the standing of current research on the origin, transport, bioaccumulation and impacts of pharmaceutical pollution on the Arctic marine ecosystem, this study collates research from the early 2000s to the end of 2023 to act as a baseline for future research. The study highlights the fact that there is an evident threat to the Arctic marine ecosystem due to pharmaceutical pollution. It also shows that the impacts of pharmaceuticals within the Arctic ocean are not well studied.

5.
Wiad Lek ; 66(1): 62-6, 2013.
Article in Polish | MEDLINE | ID: mdl-23905430

ABSTRACT

The Authors of the hereby dissertation aimed at presenting the functionality concept of the integrated e-service platform dedicated to health care institutions. In the form of a problem repository the research results allowing the identification of the functionality determinants were presented. Finally, the study presents the system's structure as well as analyzing the needs for e-services in terms of society and their usefulness evaluated by branch experts.


Subject(s)
Delivery of Health Care, Integrated/methods , Delivery of Health Care, Integrated/organization & administration , Computer-Assisted Instruction/methods , Models, Educational , Needs Assessment
6.
Mar Pollut Bull ; 197: 115763, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956494

ABSTRACT

The concentration of pharmaceuticals in coastal waters is tending towards increasing due to a shift of the human population into coastal zones. In parallel, the number of prescriptions of antidepressants, mainly selective serotonin reuptake inhibitors (SSRI), is constantly growing. Most of the SSRI is metabolised into active compounds; for instance, norfluoxetine (NFLU) is the main active metabolite of fluoxetine. In this study, we tested the bioaccumulation and depuration of NFLU in Mytilus trossulus at two environmentally relevant concentrations (100 and 500 ng/L, after six days of exposure and five days of depuration at 10 °C). The concentration of NFLU in the mussels' tissue seems not to be directly proportional to the exposure concentration. The levels of NFLU in the mussels' tissues after the depuration period were comparable to the levels detected at the end of exposure. This indicates that NFLU is not efficiently removed by the mussels and points to a potential risk for consumers of such marine organisms.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Humans , Fluoxetine , Water Pollutants, Chemical/analysis , Mytilus/metabolism , Seafood/analysis
7.
Water Res ; 226: 119260, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36279611

ABSTRACT

Multiple stressors are continuously deteriorating surface waters worldwide, posing many challenges for their conservation and restoration. Combined effect types of multiple stressors range from single-stressor dominance to complex interactions. Identifying prevalent combined effect types is critical for environmental management, as it helps to prioritise key stressors for mitigation. However, it remains unclear whether observed single and combined stressor effects reflect true ecological processes unbiased by sample size and length of stressor gradients. Therefore, we examined the role of sample size and stressor gradient lengths in 158 paired-stressor response cases with over 120,000 samples from rivers, lakes, transitional and marine ecosystems around the world. For each case, we split the overall stressor gradient into two partial gradients (lower and upper) and investigated associated changes in single and combined stressor effects. Sample size influenced the identified combined effect types, and stressor interactions were less likely for cases with fewer samples. After splitting gradients, 40 % of cases showed a change in combined effect type, 30 % no change, and 31 % showed a loss in stressor effects. These findings suggest that identified combined effect types may often be statistical artefacts rather than representing ecological processes. In 58 % of cases, we observed changes in stressor effect directions after the gradient split, suggesting unimodal stressor effects. In general, such non-linear responses were more pronounced for organisms at higher trophic levels. We conclude that observed multiple stressor effects are not solely determined by ecological processes, but also strongly depend on sampling design. Observed effects are likely to change when sample size and/or gradient length are modified. Our study highlights the need for improved monitoring programmes with sufficient sample size and stressor gradient coverage. Our findings emphasize the importance of adaptive management, as stress reduction measures or further ecosystem degradation may change multiple stressor-effect relationships, which will then require associated changes in management strategies.


Subject(s)
Ecosystem , Lakes , Oceans and Seas , Rivers , Sample Size
8.
Sci Total Environ ; 794: 148593, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34323752

ABSTRACT

Understanding of biological responses of marine fauna to seawater acidification due to potential CO2 leakage from sub-seabed storage sites has improved recently, providing support to CCS environmental risk assessment. Physiological responses of benthic organisms to ambient hypercapnia have been previously investigated but rarely at the cellular level, particularly in areas of less common geochemical and ecological conditions such as brackish water and/or reduced oxygen levels. In this study, CO2-related responses of oxygen-dependent, antioxidant and detoxification systems as well as markers of neurotoxicity and acid-base balance in the Baltic clam Limecola balthica from the Baltic Sea were quantified in 50-day experiments. Experimental conditions included CO2 addition producing pH levels of 7.7, 7.0 and 6.3, respectively and hydrostatic pressure 900 kPa, simulating realistic seawater acidities following a CO2 seepage accident at the potential CO2-storage site in the Baltic. Reduced pH interfered with most biomarkers studied, and modifications to lactate dehydrogenase and malate dehydrogenase indicate that aerobiosis was a dominant energy production pathway. Hypercapnic stress was most evident in bivalves exposed to moderately acidic seawater environment (pH 7.0), showing a decrease of glutathione peroxidase activity, activation of catalase and suppression of glutathione S-transferase activity likely in response to enhanced free radical production. The clams subjected to pH 7.0 also demonstrated acetylcholinesterase activation that might be linked to prolonged impact of contaminants released from sediment. The most acidified conditions (pH 6.3) stimulated glutathione and malondialdehyde concentration in the bivalve tissue suggesting potential cell damage. Temporal variations of most biomarkers imply that after a 10-to-15-day initial phase of an acute disturbance, the metabolic and antioxidant defence systems recovered their capacities.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Carbon Dioxide/analysis , Carbon Dioxide/toxicity , Hydrogen-Ion Concentration , Hydrostatic Pressure , Seawater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Environ Geochem Health ; 32(4): 361-6, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20383564

ABSTRACT

The aim of this work is to investigate the application of fly ash adsorbent for removal of arsenite ions from dilute solution (100-1,000 ppm). Experiments were carried out using material from the "Turów" (Poland) brown-coal-burning power plant, which was wetted, then mixed and tumbled in a granulator to form spherical agglomerates. Measurements of arsenic adsorption from aqueous solution were carried out at room temperature and natural pH of fly ash agglomerates, in either a shaken flask or circulating column, to compare two different methods of contacting solution with adsorbent. Adsorption isotherms of arsenic were determined for agglomerated material using the Freundlich equation. Kinetic studies indicated that sorption follows a pseudo-second-order model. Preferable method to carry out the process is continuous circulation of arsenite solution through a column.


Subject(s)
Arsenic/chemistry , Carbon/chemistry , Particulate Matter/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Water/chemistry , Adsorption , Coal Ash , Kinetics , X-Ray Diffraction
10.
Environ Monit Assess ; 166(1-4): 461-76, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19484366

ABSTRACT

Mussels from Mytilus edulis complex were used as biomonitors of the trace metals Fe, Mn, Pb, Zn, and Cu at 17 sampling sites to assess the relative bioavailability of metals in coastal waters around the European continent. Because accumulated metal concentrations in a given area can differ temporally, data were corrected for the effect of season before large-scale spatial comparisons were made. The highest concentration of Fe was noted in the North Sea and of Mn in the Baltic. Increased tissue concentrations of Pb were recorded in the mussels from the Bay of Biscay and the Baltic Sea. Low concentrations of metals were determined in the mussels from the Mediterranean Sea and the Northern Baltic. Relatively low geographic variations of Cu and Zn indicate that mussels are able to partially regulate accumulated body concentrations, which means Cu and Zn are, to some extent, independent of environmental concentrations.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/metabolism , Mytilus/metabolism , Water Pollutants, Chemical/metabolism , Animals , Europe , Metals, Heavy/analysis , Metals, Heavy/standards , Seasons , Seawater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/standards , Water Pollution, Chemical/statistics & numerical data
11.
Ambio ; 37(2): 93-100, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18488551

ABSTRACT

High-resolution digital photography and graphical image analyses systems have been used to define external morphometric characters of shell deformations in four populations of the Baltic clam Macoma balthica from the Gulf of Gdansk (southern Baltic Sea). The proposed shell deformation indices (SDI), which were based on the relationship of selected dimensions in the posterior and the anterior part of the shell, showed at least three morphological features that provide a distinctive diagnosis of "regular" and "deformed" clams: the presence of flexure on the posterior side (SDI1), elongated posterior region (SDI2), and shell growth (SDI3). The degree and prevalence of deformed clams varied locally over space. Increase in percentage contribution of aberrated shells with depth, corresponding to oxygen depletion profile in the Gulf, suggests low oxygen concentrations as the main agent exerting a deforming influence. The observed morphological aberrations developed with age (size) of a bivalve, suggesting a long-term effect of causal factors, and were accompanied by lightening shell weight, possibly due to decalcification of previously deposited calcareous material during anaerobic metabolism. It is hypothesized that hypoxic/anoxic conditions and a subsequent presence of hydrogen sulfide on a deep organic-rich sea bottom induce shell form alterations that enable the pumping of oxygenated water from above the anoxic layer. Such a morphological modification highlights the functional significance of shell deformations in protective response to the ambient low-oxygen concentrations. Sediment organotin concentrations fall within moderate to high contamination range and, therefore, may also have an adverse impact on the shell form. DNA analyses of the fragment of mitochondrial gene cytochrome oxidase I (COI, 393 base pairs) showed homogenous genetic structure of regular and deformed clams, indicating that shell deformations in M. balthica are primarily driven by acclimatization to the ambient environmental conditions.


Subject(s)
Bivalvia , Water Pollutants/toxicity , Animals , Bivalvia/genetics , Geologic Sediments/chemistry , Oxygen/analysis
12.
Mar Environ Res ; 140: 289-298, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30251647

ABSTRACT

Though biological consequences of CCS (Carbon Capture and Storage) implementation into the marine environment have received substantial research attention, the impact of potential CO2 leakage on benthic infauna in the Baltic Sea remained poorly recognized. This study quantified medium-term (56-day laboratory exposure) effects of CO2-induced seawater acidification (pH 7.7, 7.0 and 6.3) on energetic reserves and heat-shock protein HSP70 expression of adult bivalve Limecola balthica from the southern Baltic. While no clear impact was evident in the most acidic treatment (pH 6.3), moderate seawater hypercapnia (pH 7.0) induced elevated catabolism of high caloric reserves (carbohydrates including glycogen and lipids) in order to provide energy to cover enhanced metabolic requirements for acid-base regulation. Biochemical response did not involve, however, breakdown of proteins, suggesting that they were not utilized as metabolic substrates. As indicated also by subtle variations in the chaperone protein HSP70, the clams demonstrated high CO2 tolerance, presumably through development of efficient defensive/compensatory mechanisms during their larval and/or ontogenic life stages.


Subject(s)
Bivalvia/metabolism , Seawater , Animals , Carbohydrate Metabolism , HSP70 Heat-Shock Proteins/metabolism , Hydrogen-Ion Concentration , Lipid Metabolism , Seawater/chemistry
13.
Mar Pollut Bull ; 136: 201-211, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509800

ABSTRACT

Carbon capture and storage technology was developed as a tool to mitigate the increased emissions of carbon dioxide by capture, transportation, injection and storage of CO2 into subterranean reservoirs. There is, however, a risk of future CO2 leakage from sub-seabed storage sites to the sea-floor sediments and overlying water, causing a pH decrease. The aim of this study was to assess effects of CO2-induced seawater acidification on fertilization success and early embryonic development of the sediment-burrowing bivalve Limecola balthica L. from the Baltic Sea. Laboratory experiments using a CO2 enrichment system involved three different pH variants (pH 7.7 as control, pH 7.0 and pH 6.3, both representing environmental hypercapnia). The results showed significant fertilization success reduction under pH 7.0 and 6.3 and development delays at 4 and 9 h post gamete encounter. Several morphological aberrations (cell breakage, cytoplasm leakages, blastomere deformations) in the early embryos at different cleavage stages were observed.


Subject(s)
Bivalvia/embryology , Carbon Dioxide/blood , Seawater/chemistry , Animals , Bivalvia/physiology , Ecotoxicology/methods , Embryo, Nonmammalian , Environment , Female , Fertilization , Hydrogen-Ion Concentration , Hypercapnia/veterinary , Laboratories , Male , Oceans and Seas
14.
Mar Pollut Bull ; 127: 761-773, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28987450

ABSTRACT

Sub-Seabed CCS is regarded as a key technology for the reduction of CO2 emissions, but little is known about the mechanisms through which leakages from storage sites impact benthic species. In this study, the biological responses of the infaunal bivalve Limecola balthica to CO2-induced seawater acidification (pH7.7, 7.0, and 6.3) were quantified in 56-day mesocosm experiments. Increased water acidity caused changes in behavioral and physiological traits, but even the most acidic conditions did not prove to be fatal. In response to hypercapnia, the bivalves approached the sediment surface and increased respiration rates. Lower seawater pH reduced shell weight and growth, while it simultaneously increased soft tissue weight; this places L. balthica in a somewhat unique position among marine invertebrates.


Subject(s)
Bivalvia/drug effects , Carbon Dioxide/toxicity , Environmental Monitoring/methods , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Carbon Dioxide/analysis , Hydrogen-Ion Concentration , Oceans and Seas , Poland , Risk Assessment , Water Pollutants, Chemical/analysis
15.
J Pharm Biomed Anal ; 45(2): 275-81, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17822866

ABSTRACT

A new adsorptive catalytic voltammetric method for voltammetric determination of metformin based on the catalytic hydrogen evolution reaction at a hanging mercury drop electrode was developed. The electrode reaction was analyzed under conditions of linear sweep voltammetry (LSV), differential pulse voltammetry (DPV) and Osteryoung-type square-wave voltammetry (SWV). The peak current depends on pH of the medium, concentration and chemical composition of the buffer solution, and instrumental parameters. The optimal conditions for quantitative determination were obtained in an acetate buffer at pH 4.7. The voltammetric procedure was characterized with respect to the repeatability, precision and the recovery. The detection and quantification limits were found to be 1.8 x 10(-8) and 5.9 x 10(-8) mol l(-1) for SWV, 3.2 x 10(-8) and 1.0 x 10(-7) mol l(-1) for DPV, and 7.7 x 10(-8) and 2.5 x 10(-7) mol l(-1) for LSV, respectively. The SW voltammetric method, as the most sensitive one, was applied for determination of metformin in human urine. The voltammetric method has been validated by using HPLC with UV detection.


Subject(s)
Hypoglycemic Agents/urine , Metformin/urine , Acetates/chemistry , Adsorption , Buffers , Catalysis , Chromatography, High Pressure Liquid , Electrochemistry/methods , Electrodes , Humans , Hydrogen-Ion Concentration , Hypoglycemic Agents/chemistry , Molecular Structure , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry, Ultraviolet
16.
Mar Environ Res ; 63(3): 236-56, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17092554

ABSTRACT

Metal concentrations of Cu, Fe, Mn, Ni, Pb and Zn in an infaunal facultative deposit-feeding bivalve, the Baltic clam Macoma balthica, in the Gulf of Gdansk (southern Baltic Sea) were assessed and compared to selected concentrations of metals in the environment. Between October 1996 and September 1997, dissolved and easy extractable (by 1M HCl) metal fractions of total suspended particulate matter (TPM) in the overlying water and of surficial sediments (<63 microm) were measured monthly at five sublittoral sites in the Gulf of Gdansk, and accumulated tissue metal concentrations in M. balthica were determined simultaneously. The study highlights the importance of sediment geochemistry as a factor modifying ambient trace metal bioavailabilities. Surficial sediments appeared to contribute most to the accumulation of Cu and Pb in M. balthica, reflecting the high metal availability in the Gulf. Assimilation of Cu from sediments is controlled by Mn components possibly through an inhibitory effect of Mn oxyhydroxides, while Pb accumulation from sediments depends on the organic content of the sediment. A dual metal uptake pathway, with a suspended particulate-bound fraction and surficial sediments, was apparent for Mn and Zn. Partitioning of Mn in sediments was related to the concentration of labile Fe, with increased levels of Fe tending to inhibit the accumulation of Mn by the clam. Tissue accumulated Zn might have been altered by the clam's internal regulation, making Zn tissue concentrations, to some degree, independent of its environmental level. The principal source of Ni accumulated by the clams exists in the soluble phase.


Subject(s)
Bivalvia/metabolism , Environmental Exposure/analysis , Geologic Sediments/analysis , Metals, Heavy/analysis , Metals, Heavy/pharmacokinetics , Seawater/analysis , Animals , Biological Availability , Environmental Monitoring , Linear Models , Oceans and Seas , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/pharmacokinetics
17.
Environ Pollut ; 220(Pt B): 1147-1159, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27843016

ABSTRACT

The aim of the study was to investigate abiotic and biotic factors influencing the accumulation of endocrine disrupting compounds (EDCs) such as bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) in mussels Mytilus trossulus from the Gulf of Gdansk (Southern Baltic). The key abiotic factor influencing BPA, OP and NP accumulation in mussels is their hydrophilicity/lipophilicity, which affects their main assimilation routes - by digestive tract for the more lipophilic OP and NP, and additionally by the gills for the less lipophilic BPA. As a result, high condition index (i.e. higher soft tissue weight) is more often correlated with high concentrations of OP and NP in mussels than with BPA. Furthermore, alkylphenols have 6-8 times greater accumulative potential than BPA. Concentration of the studied compounds was lower in females than in males following spawning, and the effect lasted longer for BPA than for alkylphenols. The influence of season and hydrological conditions on BPA, OP, NP in the mussel was more pronounced than the proximity of external sources of these compounds. An increase in water temperature in summer probably stimulated the solubility of BPA, the least lipophilic of the studied compounds, and led to increased assimilation of this compound from water (through gills). On the other hand, high OP and NP concentrations in mussels occurred in spring, which was caused by increased surface run-off and sediments resuspension.


Subject(s)
Benzhydryl Compounds/metabolism , Food Chain , Mytilus/metabolism , Phenols/metabolism , Animals , Benzhydryl Compounds/chemistry , Eating , Female , Gills/metabolism , Hydrophobic and Hydrophilic Interactions , Male , Phenols/chemistry , Seasons , Temperature , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
18.
Polim Med ; 35(2): 3-14, 2005.
Article in English, Polish | MEDLINE | ID: mdl-16218127

ABSTRACT

Investigations on implants have proved that not only the kind of material structure, but also the surface character of grafts influences the local reaction of biomaterials. In recent years electrochemical reactions on implants surface leading to the so called zeta potential arouse interests. Applications of these properties has made us carry on experiments on use of biomaterials with active potential on their bio-compatibility. The aim of this work is evaluation of influence of electrical charge with zeta potentials character on the local reaction of bone tissue after implantation. Two kinds of ceramics were used in experiments: solid and solid-silane with active surface. Implantation experiments were made on 20 rabbits. Selections were carried of 12, 26, 36 and 54 weeks after implantation of the tested materials. After implantation of solid ceramics, not only bone tissue but also fibrous tissue was observed around the graft. But in case of solid silane ceramics, in all terms of tests, bone tissue tightly sticking to the implant was observed around the graft. Investigations of electrokinetic zeta potential carried out 36 and 54 weeks after implantation showed that the values of that potential originally introduced on the grafts surface were maintained on stable level. The carried out investigations confirmed that activation of implants surface through silaning with sol-gel method allows to introduce the planned zeta potential depending on the characteristic for a given kind of tissue.


Subject(s)
Aluminum Oxide/chemistry , Ceramics/chemistry , Electrochemistry , Prostheses and Implants , Animals , Biocompatible Materials/chemistry , Female , Male , Rabbits , Surface Properties , Time Factors
19.
J Phys Chem Lett ; 6(13): 2477-82, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26266722

ABSTRACT

Photobleaching is the main limiting factor in single molecule studies by optical techniques. We investigated the dependence of photostability of terrylene diimide (TDI) derivative on its environment using confocal fluorescence microscopy. Seven different polymers were tested. Depending on the matrix, photobleaching quantum yields vary by 2 orders of magnitude. Their values correlate with parameters characterizing oxygen mobility in polymers: diffusion coefficient and permeability. Poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) exhibit the lowest photodestruction quantum yields. Additional enhancement of photostability can be achieved by aging of PVC or by flushing the sample with nitrogen, which confirms the involvement of oxygen in photodestruction. Different character of the time traces of the intensity of emission from single TDI molecules is observed for different polymer matrices, ranging from intense blinking in the least stable polycarbonate, to practically no blinking in the most stable PVC. These results suggest a photodegradation mechanism involving self-sensitized photooxidation in oxygen complexes of TDI.

20.
Chemosphere ; 47(5): 475-84, 2002 May.
Article in English | MEDLINE | ID: mdl-11996123

ABSTRACT

Soft tissue accumulated concentrations of nine metals (V, As, Se, Ag, Cd, Pb, Mn, Cu and Zn) were studied in two main phenotypes (1) according to external shell colour (white and pink), and (2) according to shell shape (shell with a rounded posterior end--"regular" and with an elongate posterior end and a notable flexure--"irregular") of the Baltic clam Macoma balthica from southern Baltic Sea off Poland. No differences in metal concentrations were observed between colour-based phenotypes. By contrast, "irregular" clams exhibited generally higher concentrations of all elements in their tissues than "regular" bivalves. This finding provides the first reference on a potential linkage of shell deformation with tissue metal concentrations within one entire population of clams living in the same habitat. Different ability of metal handling in the shape-based phenotypes is presumably related to different physiological capacity of the bivalves induced by the selection effect of specific environmental conditions. It is suggested that unfavourable conditions in deep waters of the Gulf of Gdansk (e.g. hypoxia/anoxia, hydrogen sulphide, elevated bioavailability of metals) induces, in a certain part of the population, morphological deformation of shell (thereby leading to irregular shape) and in parallel physiological adaptations which result in greater sensitivity to trace metals of "irregular" clams. This hypothesis however, requires further investigation with special focus on genetic divergences between phenotypes because till now we cannot exclude the co-occurrence of two types (semi-species) of clams in the Gulf: an Atlantic type and a Baltic type. Genetic analysis with a use of DALP technique revealed strong intrapopulational polymorphism but no fingerprints or intraspecific polymorphism characterising any of the phenotypes considered (both colour- and shape-based). Since eight polymorphic loci were clearly identified further studies of population genetic structure hold optimistic promise.


Subject(s)
Bivalvia/drug effects , Metals, Heavy/pharmacology , Trace Elements/pharmacology , Adaptation, Physiological/drug effects , Anaerobiosis , Animals , Bivalvia/chemistry , Bivalvia/genetics , Environmental Monitoring/methods , Hydrogen Sulfide/metabolism , Metals, Heavy/analysis , Phenotype , Pigmentation/drug effects , Poland , Trace Elements/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL