Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Pathog ; 10(5): e1004183, 2014 May.
Article in English | MEDLINE | ID: mdl-24874799

ABSTRACT

The PhoPR two-component system is essential for virulence in Mycobacterium tuberculosis where it controls expression of approximately 2% of the genes, including those for the ESX-1 secretion apparatus, a major virulence determinant. Mutations in phoP lead to compromised production of pathogen-specific cell wall components and attenuation both ex vivo and in vivo. Using antibodies against the native protein in ChIP-seq experiments (chromatin immunoprecipitation followed by high-throughput sequencing) we demonstrated that PhoP binds to at least 35 loci on the M. tuberculosis genome. The PhoP regulon comprises several transcriptional regulators as well as genes for polyketide synthases and PE/PPE proteins. Integration of ChIP-seq results with high-resolution transcriptomic analysis (RNA-seq) revealed that PhoP controls 30 genes directly, whilst regulatory cascades are responsible for signal amplification and downstream effects through proteins like EspR, which controls Esx1 function, via regulation of the espACD operon. The most prominent site of PhoP regulation was located in the intergenic region between rv2395 and PE_PGRS41, where the mcr7 gene codes for a small non-coding RNA (ncRNA). Northern blot experiments confirmed the absence of Mcr7 in an M. tuberculosis phoP mutant as well as low-level expression of the ncRNA in M. tuberculosis complex members other than M. tuberculosis. By means of genetic and proteomic analyses we demonstrated that Mcr7 modulates translation of the tatC mRNA thereby impacting the activity of the Twin Arginine Translocation (Tat) protein secretion apparatus. As a result, secretion of the immunodominant Ag85 complex and the beta-lactamase BlaC is affected, among others. Mcr7, the first ncRNA of M. tuberculosis whose function has been established, therefore represents a missing link between the PhoPR two-component system and the downstream functions necessary for successful infection of the host.


Subject(s)
Bacterial Proteins/genetics , Membrane Transport Proteins/biosynthesis , Mycobacterium tuberculosis/metabolism , RNA, Untranslated/metabolism , Animals , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Gene Products, tat/metabolism , Humans , Mice, Inbred C57BL , Mutation/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Operon/genetics , Proteomics/methods , RNA, Untranslated/genetics , Virulence , beta-Lactamases/metabolism
2.
Infect Immun ; 82(8): 3446-56, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24891105

ABSTRACT

The ESX-1 secreted virulence factor ESAT-6 is one of the major and most well-studied virulence factors of Mycobacterium tuberculosis, given that its inactivation severely attenuates virulent mycobacteria. In this work, we show that clinical isolates of M. tuberculosis produce and secrete larger amounts of ESAT-6 than the widely used M. tuberculosis H37Rv laboratory strain. A search for the genetic polymorphisms underlying this observation showed that whiB6 (rv3862c), a gene upstream of the ESX-1 genetic locus that has not previously been found to be implicated in the regulation of the ESX-1 secretory apparatus, presents a unique single nucleotide insertion in its promoter region in strains H37Rv and H37Ra. This polymorphism is not present in any of the other publicly available M. tuberculosis complex genomes or in any of the 76 clinical M. tuberculosis isolates analyzed in our laboratory. We demonstrate that in consequence, the virulence master regulator PhoP downregulates whiB6 expression in H37Rv, while it upregulates its expression in clinical strains. Importantly, reintroduction of the wild-type (WT) copy of whiB6 in H37Rv restored ESAT-6 production and secretion to the level of clinical strains. Hence, we provide clear evidence that in M. tuberculosis--with the exception of the H37Rv strain--ESX-1 expression is regulated by WhiB6 as part of the PhoP regulon, which adds another level of complexity to the regulation of ESAT-6 secretion with a potential role in virulence adaptation.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Polymorphism, Single Nucleotide , Antigens, Bacterial , Promoter Regions, Genetic , Regulon
3.
NPJ Vaccines ; 7(1): 66, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739108

ABSTRACT

Live attenuated vaccines often have beneficial non-specific effects, protecting against heterologous infectious and non-infectious diseases. We have developed a live attenuated pertussis vaccine, named BPZE1, currently in advanced clinical development. Here, we examined the prophylactic and therapeutic potential of its pertactin-deficient derivative BPZE1P in a mouse model of house dust mite (HDM)-induced allergic airway inflammation (AAI). BPZE1P was given nasally either before or after sensitization with HDM, followed by HDM challenge, or between two challenge episodes. Vaccination prior to sensitization reduced resistance in the airways, the numbers of infiltrating eosinophils and the concentrations of proinflammatory cytokines, such as IL-1α, IL-1ß and IL-33, in the lungs but had no effect on Th2 cytokine levels. BPZE1P also protected when delivered after sensitization or between two challenge episodes. However, in this case the levels of Th2 cytokines in the lung were decreased without significant effects on IL-1α, IL-1ß and IL-33 production. The vaccine restored lung function and decreased eosinophil influx in the lungs of HDM-treated mice. BPZE1P has a better take than BPZE1 in hosts vaccinated with acellular pertussis vaccines. Therefore, it has interesting potential as a preventive and therapeutic agent against AAI, even in acellular pertussis-vaccinated populations.

4.
Vaccine ; 39(21): 2843-2849, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33896662

ABSTRACT

Pertussis, mainly caused by Bordetella pertussis, is a severe respiratory disease that can be fatal, especially in young infants. Vaccines, massively implemented since the middle of the last century, have substantially reduced the pertussis incidence, but have not been able to fully control the disease. One of the shortcomings of current pertussis vaccines is their inability to prevent infection by and transmission of B. pertussis, in contrast to immunity following natural infection. We have developed the live attenuated nasal vaccine BPZE1 and have shown that it prevents both disease and B. pertussis infection in preclinical models. This vaccine is now in clinical development. However, the initial clinical studies have suggested that vaccine take is hampered by pre-existing antibodies to pertactin. Here, we have constructed a pertactin-deficient BPZE1 derivative called BPZE1P in order to overcome this limitation. BPZE1P colonized the murine respiratory tract as efficiently as BPZE1 and induced antibodies at levels similar to those elicited by BPZE1. In the presence of pre-existing antibodies induced by acellular pertussis vaccination, BPZE1P colonized the mouse respiratory tract more efficiently than BPZE1. Both vaccines protected equally well the murine lungs and noses from challenge with laboratory and clinical strains of B. pertussis, including pertactin-deficient strains, against which current acellular pertussis vaccines are less efficient. BPZE1P may thus be an interesting alternative to BPZE1 to overcome vaccine take limitations due to pre-existing antibodies to pertactin.


Subject(s)
Pertussis Vaccine , Whooping Cough , Animals , Bacterial Outer Membrane Proteins , Bordetella pertussis/genetics , Mice , Vaccines, Attenuated , Virulence Factors, Bordetella/genetics , Whooping Cough/prevention & control
5.
mSystems ; 5(3)2020 May 19.
Article in English | MEDLINE | ID: mdl-32430408

ABSTRACT

Bordetella pertussis regulates the production of its virulence factors by the two-component system BvgAS. In the virulence phase, BvgS phosphorylates BvgA, which then activates the transcription of virulence-activated genes (vags). In the avirulence phase, such as during growth in the presence of MgSO4, BvgA is not phosphorylated and the vags are not expressed. Instead, a set of virulence-repressed genes (vrgs) is expressed. Here, we performed transcriptome sequencing (RNAseq) analyses on B. pertussis cultivated with or without MgSO4 and on a BvgA-deficient Tohama I derivative. We observed that 146 genes were less expressed under modulating conditions or in the BvgA-deficient strain than under the nonmodulating condition, while 130 genes were more expressed. Some of the genes code for proteins with regulatory functions, suggesting a BvgA/S regulation cascade. To determine which genes are directly regulated by BvgA, we performed chromatin immunoprecipitation sequencing (ChIPseq) analyses. We identified 148 BvgA-binding sites, 91 within putative promoter regions, 52 within open reading frames, and 5 in noncoding regions. Among the former, 32 are in BvgA-regulated putative promoter regions. Some vags, such as dnt and fhaL, contain no BvgA-binding site, suggesting indirect BvgA regulation. Unexpectedly, BvgA also bound to some vrg putative promoter regions. Together, these observations indicate an unrecognized complexity of BvgA/S biology.IMPORTANCE Bordetella pertussis, the etiological agent of whooping cough, remains a major global health problem. Despite the global usage of whole-cell vaccines since the 1950s and of acellular vaccines in the 1990s, it still is one of the most prevalent vaccine-preventable diseases in industrialized countries. Virulence of B. pertussis is controlled by BvgA/S, a two-component system responsible for upregulation of virulence-activated genes (vags) and downregulation of virulence-repressed genes (vrgs). By transcriptome sequencing (RNAseq) analyses, we identified more than 270 vags or vrgs, and chromatin immunoprecipitation sequencing (ChIPseq) analyses revealed 148 BvgA-binding sites, 91 within putative promoter regions, 52 within open reading frames, and 5 in noncoding regions. Some vags, such as dnt and fhaL, do not contain a BvgA-binding site, suggesting indirect regulation. In contrast, several vrgs and some genes not identified by RNAseq analyses under laboratory conditions contain strong BvgA-binding sites, indicating previously unappreciated complexities of BvgA/S biology.

6.
Animals (Basel) ; 9(12)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847230

ABSTRACT

Digestive disorders are the main cause of economic damage to rabbit farms. This article provides a global and updated overview of the diverse etiological agents causing them, since 757 clinical cases were analyzed during 2018 and 2019-Ninety-five from young rabbits (<15 days old), 117 from preweaning rabbits (15-35 days old), and 545 from growing rabbits. Etiological diagnosis was carried out by bacteriological culture and a set of real time polymerase chain reaction (qPCR) tests for the detection of enteropathogenic Escherichia coli (EPEC), Clostridium spiroforme, C. perfringens, rotavirus A, Bacteroides fragilis, and Eimeria spp. Also, 40 EPEC and 38 non EPEC isolates were investigated for the presence of other colonization factors (afr2, ral, liftA, and paa) by qPCR. EPEC is the most prevalent agent in young rabbits, and although different virulence profiles have been found among EPEC isolates, the liftA+, ral+, and paa+ profile is the most prevalent. C. spiroforme and EPEC are the more frequently detected pathogens in preweaning rabbits, but B. fragilis appears to be a new possible emergent pathogen. In growing rabbits, diverse co-infections between C. spiroforme, Eimeria spp., EPEC, and rotavirus are much more frequent than infections due to only one of them. Other pathogens detected in very few cases are Salmonella spp. and Enterococcus hirae.

7.
Front Immunol ; 9: 3068, 2018.
Article in English | MEDLINE | ID: mdl-30692990

ABSTRACT

Pertussis or whooping cough, mainly caused by Bordetella pertussis, is a severe respiratory disease that can affect all age groups but is most severe and can be life-threatening in young children. Vaccines against this disease are widely available since the 1950s. Despite high global vaccination coverage, the disease is not under control in any country, and its incidence is even increasing in several parts of the world. Epidemiological and experimental evidence has shown that the vaccines fail to prevent B. pertussis infection and transmission, although they are very effective in preventing disease. Given the high infection rate of B. pertussis, effective control of the disease likely requires prevention of infection and transmission in addition to protection against disease. With rare exceptions B. pertussis infections are restricted to the airways and do not usually disseminate beyond the respiratory epithelium. Therefore, protection at the level of the respiratory mucosa may be helpful for an improved control of pertussis. Yet, compared to systemic responses, mucosal immune responses have attracted relatively little attention in the context of pertussis vaccine development. In this review we summarize the available literature on the role of mucosal immunity in the prevention of B. pertussis infection. In contrast to vaccination, natural infection in humans and experimental infections in animals induce strong secretory IgA responses in the naso-pharynx and in the lungs. Several studies have shown that secretory IgA may be instrumental in the control of B. pertussis infection. Furthermore, studies in mouse models have revealed that B. pertussis infection, but not immunization with current acellular pertussis vaccines induces resident memory T cells, which may also contribute to protection against colonization by B. pertussis. As these resident memory T cells are long lived, vaccines that are able to induce them should provide long-lasting immunity. As of today, only one vaccine designed to induce potent mucosal immunity is in clinical development. This vaccine is a live attenuated B. pertussis strain delivered nasally in order to mimic the natural route of infection. Due to its ability to induce mucosal immunity it is expected that this approach will contribute to improved control of pertussis.


Subject(s)
Bordetella pertussis/immunology , Immunity, Mucosal/immunology , Immunoglobulin A, Secretory/immunology , Pertussis Vaccine/immunology , Respiratory Mucosa/immunology , Animals , Bordetella pertussis/pathogenicity , Disease Models, Animal , Humans , Immunogenicity, Vaccine , Immunoglobulin A, Secretory/metabolism , Mice , Pertussis Vaccine/administration & dosage , Respiratory Mucosa/microbiology , Time Factors , Treatment Outcome , Vaccination/methods , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Whooping Cough/immunology , Whooping Cough/microbiology , Whooping Cough/prevention & control , Whooping Cough/transmission
8.
PLoS One ; 13(10): e0204861, 2018.
Article in English | MEDLINE | ID: mdl-30307950

ABSTRACT

The whooping cough agent Bordetella pertussis coordinately regulates the expression of its virulence factors with the two-component system BvgAS. In laboratory conditions, specific chemical modulators are used to trigger phenotypic modulation of B. pertussis from its default virulent Bvg+ phase to avirulent Bvg- or intermediate Bvgi phases, in which no virulence factors or only a subset of them are produced, respectively. Whether phenotypic modulation occurs in the host remains unknown. In this work, recombinant B. pertussis strains harboring BvgS variants were tested in a mouse model of infection and analyzed using transcriptomic approaches. Recombinant BP-BvgΔ65, which is in the Bvgi phase by default and can be up-modulated to the Bvg+ phase in vitro, could colonize the mouse nose but was rapidly cleared from the lungs, while Bvg+-phase strains colonized both organs for up to four weeks. These results indicated that phenotypic modulation, which might have restored the full virulence capability of BP-BvgΔ65, does not occur in mice or is temporally or spatially restricted and has no effect in those conditions. Transcriptomic analyses of this and other recombinant Bvgi and Bvg+-phase strains revealed that two distinct ranges of virulence gene expression allow colonization of the mouse nose and lungs, respectively. We also showed that a recombinant strain expressing moderately lower levels of the virulence genes than its wild type parent was as efficient at colonizing both organs. Altogether, genetic modifications of BvgS generate a range of phenotypic phases, which are useful tools to decipher host-pathogen interactions.


Subject(s)
Bacterial Proteins/genetics , Bordetella pertussis/pathogenicity , Mutation , Transcription Factors/genetics , Virulence , Whooping Cough/microbiology , Animals , Bacterial Proteins/metabolism , Bordetella pertussis/genetics , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Lung/microbiology , Mice , Nose/microbiology , Protein Engineering , Sequence Analysis, RNA , Transcription Factors/metabolism
9.
Emerg Microbes Infect ; 7(1): 39, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29559630

ABSTRACT

Whooping cough, caused by Bordetella pertussis, has resurged and presents a global health burden worldwide. B. pertussis strains unable to produce the acellular pertussis vaccine component pertactin (Prn), have been emerging and in some countries represent up to 95% of recent clinical isolates. Knowledge on the effect that Prn deficiency has on infection and immunity to B. pertussis is crucial for the development of new strategies to control this disease. Here, we characterized the effect of Prn production by B. pertussis on human and murine dendritic cell (DC) maturation as well as in a murine model for pertussis infection. We incubated human monocyte-derived DCs (moDCs) with multiple isogenic Prn knockout (Prn-KO) and corresponding parental B. pertussis strains constructed either in laboratory reference strains with a Tohama I background or in a recently circulating clinical isolate. Results indicate that, compared to the parental strains, Prn-KO strains induced an increased production of pro-inflammatory cytokines by moDCs. This pro-inflammatory phenotype was also observed upon stimulation of murine bone marrow-derived DCs. Moreover, RNA sequencing analysis of lungs from mice infected with B. pertussis Prn-KO revealed increased expression of genes involved in cell death. These in vitro and in vivo findings indicate that B. pertussis strains which do not produce Prn induce a stronger pro-inflammatory response and increased cell death upon infection, suggesting immunomodulatory properties for Prn.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Proteins/immunology , Bordetella pertussis/immunology , Virulence Factors, Bordetella/genetics , Virulence Factors, Bordetella/immunology , Virulence Factors/immunology , Whooping Cough/immunology , Animals , Bacterial Outer Membrane Proteins/administration & dosage , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Bordetella pertussis/genetics , Cytokines/immunology , Female , Gene Knockout Techniques , Humans , Mice , Mice, Inbred BALB C , Pertussis Vaccine/administration & dosage , Pertussis Vaccine/genetics , Pertussis Vaccine/immunology , Virulence Factors/administration & dosage , Virulence Factors/genetics , Virulence Factors, Bordetella/administration & dosage , Whooping Cough/microbiology , Whooping Cough/prevention & control
10.
Mucosal Immunol ; 11(6): 1753-1762, 2018 11.
Article in English | MEDLINE | ID: mdl-30115992

ABSTRACT

BPZE1 is a live attenuated Bordetella pertussis vaccine for nasal administration to mimic the natural route of infection. Here, we studied the mechanism of BPZE1-induced immunity in the murine nasal cavity in contrast to acellular vaccine (aPV), although both vaccines protected against lung colonization. Transfer of splenocytes or serum from BPZE1-vaccinated or aPV-vaccinated mice protected naïve mice against lung colonization but not against nasal colonization. However, transfer of nasal washes from BPZE1-vaccinated mice resulted in protection against nasal colonization, which was lost in IgA-deficient or poly-Ig receptor-deficient mice, indicating that it depends on secretory IgA (SIgA) induction induced in the nose. BPZE1-induced protection against nasal colonization was long-lived despite the relatively rapid decay of SIgA, indicating a potent BPZE1-induced local memory response, likely due to CD4+ tissue-resident memory T cells induced in the nose by BPZE1. These cells produced interleukin-17 (IL-17), known to be important for SIgA secretion. Furthermore, BPZE1 failed to protect Il17-/- mice against nasal colonization by B. pertussis and induced only background levels of nasal SIgA. Thus, our results show important differences in the protective mechanism between the upper and the lower murine respiratory tract and demonstrate an IL-17-dependent SIgA-mediated mechanism of BPZE1-induced protection against B. pertussis nasopharyngeal colonization.


Subject(s)
Bordetella pertussis/physiology , Immunoglobulin A, Secretory/metabolism , Interleukin-17/metabolism , Nose/immunology , Pertussis Vaccine/immunology , Receptors, Cell Surface/metabolism , Whooping Cough/immunology , Animals , Cells, Cultured , Humans , Immunoglobulin A, Secretory/genetics , Interleukin-17/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nose/microbiology , Receptors, Cell Surface/genetics , Vaccines, Attenuated
11.
PLoS One ; 12(5): e0176396, 2017.
Article in English | MEDLINE | ID: mdl-28493897

ABSTRACT

The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen.


Subject(s)
Bordetella pertussis/genetics , Methyltransferases/genetics , Virulence Factors, Bordetella/genetics , Whooping Cough/genetics , Bacterial Proteins/genetics , Bordetella pertussis/enzymology , Bordetella pertussis/pathogenicity , Fatty Acids, Nonesterified/genetics , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/genetics , Humans , Regulon/genetics , Signal Transduction , Whooping Cough/microbiology
12.
Vaccine ; 32(40): 5192-7, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25066740

ABSTRACT

Safety of individuals at risk of immune suppression is an important concern for live vaccines. The new-generation tuberculosis vaccine candidate MTBVAC, a genetically engineered doubly attenuated Mycobacterium tuberculosis mutant with deletions in phoP and fadD26 virulence genes has demonstrated comparable safety in different relevant animal models and superior protection in mice as compared to the only currently licensed tuberculosis vaccine Mycobacterium bovis BCG. Here we describe the construction of a highly attenuated MTBVAC-based live vaccine by an additional gene inactivation generated in erp of MTBVAC. The gene product of erp is an exported repeated protein (Erp), a virulence factor described to be involved in intracellular replication of M. tuberculosis. The resultant strain, MTBVAC erp(-), was tested in severe combined immunodeficiency (SCID) mouse model showing to be severely attenuated when compared to BCG and MTBVAC. Experiments conducted in immunocompetent mice revealed that the hyper-attenuated profile observed with MTBVAC erp(-) strain did not compromise its protective efficacy profile in comparison with BCG. These results postulate MTBVAC erp(-) as a potential tuberculosis vaccine candidate for use in high-risk populations of immune suppression (e.g., due to HIV infection), where the use of BCG is not recommended.


Subject(s)
Bacterial Proteins/genetics , Membrane Proteins/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Animals , BCG Vaccine/immunology , Cell Line , Disease Models, Animal , Mice, Inbred C57BL , Mice, SCID , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL