Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Technol ; 40(8): 1013-1026, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29219761

ABSTRACT

Anaerobic digestion is widely used to produce renewable energy. However, the main drawback is the limited conversion efficiency of organic matter. Applying an advanced oxidation process as a digestate post-treatment is able to increase this conversion efficiency but will also lead to the oxidation of ammonium to nitrite or nitrate. In this lab-scale study, the fate of the latter in the digester was investigated. Nitrite and nitrate were therefore added in concentrations that could arise from rate-limiting ammonium concentrations (1.25-5 g L-1 N). The study clearly demonstrated that nitrite and nitrate were denitrified during the subsequent digestion process resulting in the formation of nitrogen gas. After a concentration-dependent adaptation period, in which some biogas was produced, the added nitrite was denitrified in amounts proportional to the amounts of electron donor present. This denitrification, however, strongly reduces the possibility that Anammox bacteria can develop. Nitrate was also denitrified in amounts proportional to the amounts of electron donor, but biogas production was not completely blocked in this case. Moreover, high concentrations of nitrite and nitrate inhibited their own denitrification. The methane formed was used as electron donor for the further denitrification of nitrate and nitrite when no other readily available electron donor was present. After addition of either nitrite or nitrate and their denitrification, the biogas production did not recover properly.


Subject(s)
Bioreactors , Nitrites , Anaerobiosis , Denitrification , Nitrates , Nitrogen , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL