Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Nature ; 586(7828): 292-298, 2020 10.
Article in English | MEDLINE | ID: mdl-32999459

ABSTRACT

The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repeat Expansion/genetics , Dinucleotide Repeats/genetics , Neoplasms/genetics , Werner Syndrome Helicase/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Chromosomes, Human/genetics , Chromosomes, Human/metabolism , Chromothripsis , DNA Cleavage , DNA Replication , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , Genomic Instability , Humans , Recombinases/metabolism
2.
Nucleic Acids Res ; 51(22): 12242-12260, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37930826

ABSTRACT

Telomeric repeat-containing RNA (TERRA) and its formation of RNA:DNA hybrids (or TERRA R-loops), influence telomere maintenance, particularly in human cancer cells that use homologous recombination-mediated alternative lengthening of telomeres. Here, we report that the RNA-binding motif protein 14 (RBM14) is associated with telomeres in human cancer cells. RBM14 negatively regulates TERRA expression. It also binds to TERRA and inhibits it from forming TERRA R-loops at telomeres. RBM14 depletion has several effects, including elevated TERRA levels, telomeric R-loops, telomere dysfunction-induced DNA damage foci formation, particularly in the presence of DNA replication stress, pRPA32 accumulation at telomeres and telomere signal-free ends. Thus, RBM14 protects telomere integrity via modulating TERRA levels and its R-loop formation at telomeres.


Subject(s)
Telomere Homeostasis , Telomere , Humans , DNA/genetics , R-Loop Structures , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Motifs , Telomere/genetics , Telomere/metabolism , Neoplasms/genetics
3.
J Biol Chem ; 299(3): 102980, 2023 03.
Article in English | MEDLINE | ID: mdl-36739951

ABSTRACT

Replication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication. We determined that Nsp13 preferentially interacts with single-stranded DNA compared with single-stranded RNA to unwind a partial duplex helicase substrate. We present evidence for functional cooperativity as a function of Nsp13 concentration, which suggests that oligomerization is important for optimal activity. In addition, under single-turnover conditions, Nsp13 unwound partial duplex RNA substrates of increasing double-stranded regions (16-30 base pairs) with similar efficiency, suggesting the enzyme unwinds processively in this range. We also show Nsp13-catalyzed RNA unwinding is abolished by a site-specific neutralizing linkage in the sugar-phosphate backbone, demonstrating continuity in the helicase-translocating strand is essential for unwinding the partial duplex substrate. Taken together, we demonstrate for the first time that coronavirus helicase Nsp13 disrupts a high-affinity RNA-protein interaction in a unidirectional and ATP-dependent manner. Furthermore, sensitivity of Nsp13 catalytic functions to Mg2+ concentration suggests a regulatory mechanism for ATP hydrolysis, duplex unwinding, and RNA protein remodeling, processes implicated in SARS-CoV-2 replication and proofreading.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Viral Nonstructural Proteins , Humans , Adenosine Triphosphate/metabolism , COVID-19/virology , RNA , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism
4.
Methods ; 204: 207-214, 2022 08.
Article in English | MEDLINE | ID: mdl-34929333

ABSTRACT

G-quadruplex (G4) DNA poses a unique obstacle to DNA synthesis during replication or DNA repair due to its unusual structure which deviates significantly from the conventional DNA double helix. A mechanism to overcome the G4 roadblock is provided by the action of a G4-resolving helicase that collaborates with the DNA polymerase to smoothly catalyze polynucleotide synthesis past the unwound G4. In this technique-focused paper, we describe the experimental approaches of the primer extension assay using a G4 DNA template to measure the extent and fidelity of DNA synthesis by a DNA polymerase acting in concert with a G4-resolving DNA helicase. Important parameters pertaining to reaction conditions and controls are discussed to aid in the design of experiments and interpretation of the data obtained. This methodology can be applied in multiple capacities that may depend on the DNA substrate, DNA polymerase, or DNA helicase under investigation.


Subject(s)
G-Quadruplexes , DNA/chemistry , DNA/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair , DNA Replication
5.
Hum Mol Genet ; 29(8): 1292-1309, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32191790

ABSTRACT

As the powerhouses of the eukaryotic cell, mitochondria must maintain their genomes which encode proteins essential for energy production. Mitochondria are characterized by guanine-rich DNA sequences that spontaneously form unusual three-dimensional structures known as G-quadruplexes (G4). G4 structures can be problematic for the essential processes of DNA replication and transcription because they deter normal progression of the enzymatic-driven processes. In this study, we addressed the hypothesis that mitochondrial G4 is a source of mutagenesis leading to base-pair substitutions. Our computational analysis of 2757 individual genomes from two Italian population cohorts (SardiNIA and InCHIANTI) revealed a statistically significant enrichment of mitochondrial mutations within sequences corresponding to stable G4 DNA structures. Guided by the computational analysis results, we designed biochemical reconstitution experiments and demonstrated that DNA synthesis by two known mitochondrial DNA polymerases (Pol γ, PrimPol) in vitro was strongly blocked by representative stable G4 mitochondrial DNA structures, which could be overcome in a specific manner by the ATP-dependent G4-resolving helicase Pif1. However, error-prone DNA synthesis by PrimPol using the G4 template sequence persisted even in the presence of Pif1. Altogether, our results suggest that genetic variation is enriched in G-quadruplex regions that impede mitochondrial DNA replication.


Subject(s)
DNA Helicases/genetics , DNA Polymerase gamma/genetics , DNA Primase/genetics , DNA Replication/genetics , DNA-Directed DNA Polymerase/genetics , G-Quadruplexes , Multifunctional Enzymes/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Guanine/metabolism , Humans , Italy , Mitochondria/genetics , Mutagenesis/genetics , Mutation/genetics , Nucleic Acid Conformation , Whole Genome Sequencing
6.
Nucleic Acids Res ; 48(16): 9161-9180, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32797166

ABSTRACT

FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.


Subject(s)
BRCA1 Protein/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia Complementation Group Proteins/genetics , Genomic Instability/genetics , Histone Chaperones/genetics , RNA Helicases/genetics , Rad51 Recombinase/genetics , Chromosomal Instability/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Damage/genetics , DNA Repair/genetics , DNA-Binding Proteins/deficiency , Gene Knockout Techniques , HeLa Cells , Histone Chaperones/deficiency , Humans , Mitomycin/pharmacology , Recombinational DNA Repair/genetics
7.
Nucleic Acids Res ; 46(12): 6238-6256, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29788478

ABSTRACT

Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj-/- cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj-/- cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.


Subject(s)
DNA Breaks, Double-Stranded , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair , DNA Replication , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Aphidicolin/toxicity , Cell Line , Checkpoint Kinase 1/metabolism , Chickens , Cisplatin/toxicity , DNA, Single-Stranded , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group Proteins/chemistry , G-Quadruplexes , Mutation, Missense , Oxazoles/toxicity , RNA Helicases/chemistry , Rad51 Recombinase/analysis , Recombinases/genetics , Recombinases/metabolism , Replication Protein A/metabolism , Stress, Physiological
8.
J Biol Chem ; 291(27): 14324-14339, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27226550

ABSTRACT

Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.


Subject(s)
DNA Helicases/metabolism , DNA/metabolism , Mitochondrial Proteins/metabolism , DNA/chemistry , DNA Damage , Fluorescence Resonance Energy Transfer , Humans , Oxidation-Reduction , Substrate Specificity
9.
Methods ; 108: 130-41, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27064001

ABSTRACT

The growing number of DNA helicases implicated in hereditary disorders and cancer indicates that this particular class of enzymes plays key roles in genomic stability and cellular homeostasis. Indeed, a large body of work has provided molecular and cellular evidence that helicases act upon a variety of nucleic acid substrates and interact with numerous proteins to enact their functions in replication, DNA repair, recombination, and transcription. Understanding how helicases operate in unique and overlapping pathways is a great challenge to researchers. In this review, we describe a series of experimental approaches and methodologies to identify and characterize DNA helicase inhibitors which collectively provide an alternative and useful strategy to explore their biological significance in cell-based systems. These procedures were used in the discovery of biologically active compounds that inhibited the DNA unwinding function catalyzed by the human WRN helicase-nuclease defective in the premature aging disorder Werner syndrome. We describe in vitro and in vivo experimental approaches to characterize helicase inhibitors with WRN as the model, anticipating that these approaches may be extrapolated to other DNA helicases, particularly those implicated in DNA repair and/or the replication stress response.


Subject(s)
Biological Assay/methods , DNA Helicases/antagonists & inhibitors , DNA Replication/genetics , Enzyme Inhibitors/isolation & purification , DNA Helicases/chemistry , DNA Repair/genetics , Enzyme Inhibitors/chemistry , Humans , Substrate Specificity
10.
J Biol Chem ; 289(29): 19928-41, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24895130

ABSTRACT

Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , DNA/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , RecQ Helicases/metabolism , Replication Protein A/metabolism , Amino Acid Substitution , Base Sequence , DNA/chemistry , DNA/genetics , Deoxyribonuclease BamHI/metabolism , Exodeoxyribonucleases/metabolism , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Nucleic Acid Conformation , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Replication Protein A/genetics , Substrate Specificity , Telomeric Repeat Binding Protein 1/metabolism , Werner Syndrome Helicase
11.
J Biol Chem ; 289(43): 29975-93, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25193669

ABSTRACT

Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.


Subject(s)
DNA Helicases/metabolism , DNA Replication , DNA, Mitochondrial/genetics , Disease/genetics , G-Quadruplexes , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Sequence Deletion/genetics , Aging/genetics , Animals , Base Sequence , Circular Dichroism , Computational Biology , Conserved Sequence/genetics , DNA Damage , Evolution, Molecular , Genome, Mitochondrial/genetics , Humans , Molecular Sequence Data , Neoplasms/genetics , Nucleic Acid Denaturation , Nucleotide Motifs/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Telomere/metabolism , Ultraviolet Rays
12.
EMBO J ; 30(4): 692-705, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21240188

ABSTRACT

Bloom's syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact physically and functionally in human cells and co-localize to nuclear foci in response to replication stress. The cellular level of BLM is strongly dependent upon FANCJ, and BLM is degraded by a proteasome-mediated pathway when FANCJ is depleted. FANCJ-deficient cells display increased sister chromatid exchange and sensitivity to replication stress. Expression of a FANCJ C-terminal fragment that interacts with BLM exerted a dominant negative effect on hydroxyurea resistance by interfering with the FANCJ-BLM interaction. FANCJ and BLM synergistically unwound a DNA duplex substrate with sugar phosphate backbone discontinuity, but not an 'undamaged' duplex. Collectively, the results suggest that FANCJ catalytic activity and its effect on BLM protein stability contribute to preservation of genomic stability and a normal response to replication stress.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Bloom Syndrome/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia/genetics , RecQ Helicases/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Cell Nucleus/metabolism , Cells, Cultured , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Helicases/physiology , DNA Replication/genetics , DNA Replication/physiology , Fanconi Anemia Complementation Group Proteins/genetics , Genomic Instability/genetics , HeLa Cells , Humans , Insecta , Protein Binding/physiology , Protein Interaction Mapping , RecQ Helicases/genetics , Tissue Distribution
13.
Cell Mol Life Sci ; 71(14): 2625-39, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24487782

ABSTRACT

In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron-Sulfur (Fe-S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe-S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair.


Subject(s)
Abnormalities, Multiple/genetics , DEAD-box RNA Helicases/genetics , DNA Helicases/genetics , DEAD-box RNA Helicases/physiology , DNA Breaks , DNA Helicases/physiology , G-Quadruplexes , Genomic Instability , Homeostasis , Humans , Mitomycin , Mutation , Neoplasms/genetics , Papillomaviridae/genetics , Phenotype , Substrate Specificity , Syndrome
14.
J Biol Chem ; 288(39): 28217-29, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23935105

ABSTRACT

G-quadruplex (G4) DNA, an alternate structure formed by Hoogsteen hydrogen bonds between guanines in G-rich sequences, threatens genomic stability by perturbing normal DNA transactions including replication, repair, and transcription. A variety of G4 topologies (intra- and intermolecular) can form in vitro, but the molecular architecture and cellular factors influencing G4 landscape in vivo are not clear. Helicases that unwind structured DNA molecules are emerging as an important class of G4-resolving enzymes. The BRCA1-associated FANCJ helicase is among those helicases able to unwind G4 DNA in vitro, and FANCJ mutations are associated with breast cancer and linked to Fanconi anemia. FANCJ belongs to a conserved iron-sulfur (Fe S) cluster family of helicases important for genomic stability including XPD (nucleotide excision repair), DDX11 (sister chromatid cohesion), and RTEL (telomere metabolism), genetically linked to xeroderma pigmentosum/Cockayne syndrome, Warsaw breakage syndrome, and dyskeratosis congenita, respectively. To elucidate the role of FANCJ in genomic stability, its molecular functions in G4 metabolism were examined. FANCJ efficiently unwound in a kinetic and ATPase-dependent manner entropically favored unimolecular G4 DNA, whereas other Fe-S helicases tested did not. The G4-specific ligands Phen-DC3 or Phen-DC6 inhibited FANCJ helicase on unimolecular G4 ∼1000-fold better than bi- or tetramolecular G4 DNA. The G4 ligand telomestatin induced DNA damage in human cells deficient in FANCJ but not DDX11 or XPD. These findings suggest FANCJ is a specialized Fe-S cluster helicase that preserves chromosomal stability by unwinding unimolecular G4 DNA likely to form in transiently unwound single-stranded genomic regions.


Subject(s)
Basic-Leucine Zipper Transcription Factors/chemistry , Fanconi Anemia Complementation Group Proteins/chemistry , G-Quadruplexes , Gene Expression Regulation , Genomic Instability , Iron-Sulfur Proteins/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , DNA/chemistry , DNA Helicases/genetics , DNA Repair , DNA Replication , Escherichia coli/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Guanine/chemistry , Humans , Inhibitory Concentration 50 , Ligands , RNA Interference , Recombinant Proteins/chemistry , Thermoplasma/metabolism
15.
Proc Natl Acad Sci U S A ; 108(4): 1525-30, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21220316

ABSTRACT

Modulation of DNA repair proteins by small molecules has attracted great interest. An in vitro helicase activity screen was used to identify molecules that modulate DNA unwinding by Werner syndrome helicase (WRN), mutated in the premature aging disorder Werner syndrome. A small molecule from the National Cancer Institute Diversity Set designated NSC 19630 [1-(propoxymethyl)-maleimide] was identified that inhibited WRN helicase activity but did not affect other DNA helicases [Bloom syndrome (BLM), Fanconi anemia group J (FANCJ), RECQ1, RecQ, UvrD, or DnaB). Exposure of human cells to NSC 19630 dramatically impaired growth and proliferation, induced apoptosis in a WRN-dependent manner, and resulted in elevated γ-H2AX and proliferating cell nuclear antigen (PCNA) foci. NSC 19630 exposure led to delayed S-phase progression, consistent with the accumulation of stalled replication forks, and to DNA damage in a WRN-dependent manner. Exposure to NSC 19630 sensitized cancer cells to the G-quadruplex-binding compound telomestatin or a poly(ADP ribose) polymerase (PARP) inhibitor. Sublethal dosage of NSC 19630 and the chemotherapy drug topotecan acted synergistically to inhibit cell proliferation and induce DNA damage. The use of this WRN helicase inhibitor molecule may provide insight into the importance of WRN-mediated pathway(s) important for DNA repair and the replicational stress response.


Subject(s)
DNA Damage/drug effects , Enzyme Inhibitors/pharmacology , Exodeoxyribonucleases/antagonists & inhibitors , Maleimides/pharmacology , RecQ Helicases/antagonists & inhibitors , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Replication/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Enzyme Inhibitors/chemistry , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , HeLa Cells , Histones/metabolism , Humans , Immunoblotting , Maleimides/chemistry , Molecular Structure , Oxazoles/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , S Phase/drug effects , Stress, Physiological/drug effects , Time Factors , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Werner Syndrome Helicase
16.
Methods Enzymol ; 695: 1-27, 2024.
Article in English | MEDLINE | ID: mdl-38521581

ABSTRACT

G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.


Subject(s)
DNA Helicases , G-Quadruplexes , Humans , DNA Helicases/genetics , DNA Helicases/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Recombinases/genetics , Recombinases/metabolism , DNA/metabolism , DNA Repair , DNA Replication , Recombinant Proteins/metabolism
17.
Hum Mutat ; 34(1): 103-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23033317

ABSTRACT

Mutations in the gene encoding the iron-sulfur-containing DNA helicase DDX11 (ChlR1) were recently identified as a cause of a new recessive cohesinopathy, Warsaw breakage syndrome (WABS), in a single patient with severe microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Here, using homozygosity mapping in a Lebanese consanguineous family followed by exome sequencing, we identified a novel homozygous mutation (c.788G>A [p.R263Q]) in DDX11 in three affected siblings with severe intellectual disability and many of the congenital abnormalities reported in the WABS original case. Cultured lymphocytes from the patients showed increased mitomycin C-induced chromosomal breakage, as found in WABS. Biochemical studies of purified recombinant DDX11 indicated that the p.R263Q mutation impaired DDX11 helicase activity by perturbing its DNA binding and DNA-dependent ATP hydrolysis. Our findings thus confirm the involvement of DDX11 in WABS, describe its phenotypical spectrum, and provide novel insight into the structural requirement for DDX11 activity.


Subject(s)
Abnormalities, Multiple/genetics , DEAD-box RNA Helicases/genetics , DNA Helicases/genetics , Genetic Predisposition to Disease/genetics , Mutation, Missense , Abnormalities, Multiple/pathology , Amino Acid Sequence , Base Sequence , Chromosome Breakage , Consanguinity , DEAD-box RNA Helicases/metabolism , DNA Helicases/metabolism , Exome/genetics , Family Health , Female , Humans , Intellectual Disability , Male , Pedigree , Sequence Analysis, DNA , Syndrome
18.
J Biol Chem ; 287(26): 21699-716, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22582397

ABSTRACT

The Q motif, conserved in a number of RNA and DNA helicases, is proposed to be important for ATP binding based on structural data, but its precise biochemical functions are less certain. FANCJ encodes a Q motif DEAH box DNA helicase implicated in Fanconi anemia and breast cancer. A Q25A mutation of the invariant glutamine in the Q motif abolished its ability to complement cisplatin or telomestatin sensitivity of a fancj null cell line and exerted a dominant negative effect. Biochemical characterization of the purified recombinant FANCJ-Q25A protein showed that the mutation disabled FANCJ helicase activity and the ability to disrupt protein-DNA interactions. FANCJ-Q25A showed impaired DNA binding and ATPase activity but displayed ATP binding and temperature-induced unfolding transition similar to FANCJ-WT. Size exclusion chromatography and sedimentation velocity analyses revealed that FANCJ-WT existed as molecular weight species corresponding to a monomer and a dimer, and the dimeric form displayed a higher specific activity for ATPase and helicase, as well as greater DNA binding. In contrast, FANCJ-Q25A existed only as a monomer, devoid of helicase activity. Thus, the Q motif is essential for FANCJ enzymatic activity in vitro and DNA repair function in vivo.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Animals , Catalysis , Cell Line , Cell Survival , Chickens , Chromatography/methods , DNA Repair , Dimerization , Glycerol/pharmacology , HeLa Cells , Humans , Hydrolysis , Kinetics , Models, Biological , Models, Genetic , Mutagenesis , Mutagenesis, Site-Directed , Mutation , Oxazoles/pharmacology , Protein Denaturation , Recombinant Proteins/metabolism , Temperature
19.
J Biol Chem ; 287(2): 1007-21, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22102414

ABSTRACT

Mutations in the human ChlR1 gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in sister chromatid cohesion and hypersensitivity to agents that induce replication stress. A role of ChlR1 helicase in sister chromatid cohesion was first evidenced by studies of the yeast homolog Chl1p; however, its cellular functions in DNA metabolism are not well understood. We carefully examined the DNA substrate specificity of purified recombinant human ChlR1 protein and the biochemical effect of a patient-derived mutation, a deletion of a single lysine (K897del) in the extreme C terminus of ChlR1. The K897del clinical mutation abrogated ChlR1 helicase activity on forked duplex or D-loop DNA substrates by perturbing its DNA binding and DNA-dependent ATPase activity. Wild-type ChlR1 required a minimal 5' single-stranded DNA tail of 15 nucleotides to efficiently unwind a simple duplex DNA substrate. The additional presence of a 3' single-stranded DNA tail as short as five nucleotides dramatically increased ChlR1 helicase activity, demonstrating the preference of the enzyme for forked duplex structures. ChlR1 unwound G-quadruplex (G4) DNA with a strong preference for a two-stranded antiparallel G4 (G2') substrate and was only marginally active on a four-stranded parallel G4 structure. The marked difference in ChlR1 helicase activity on the G4 substrates, reflected by increased binding to the G2' substrate, distinguishes ChlR1 from the sequence-related FANCJ helicase mutated in Fanconi anemia. The biochemical results are discussed in light of the known cellular defects associated with ChlR1 deficiency.


Subject(s)
DEAD-box RNA Helicases/chemistry , DNA Helicases/chemistry , DNA Repair-Deficiency Disorders/enzymology , DNA/chemistry , Amino Acid Sequence , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA/genetics , DNA/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair-Deficiency Disorders/genetics , Fanconi Anemia Complementation Group Proteins/chemistry , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Humans , Sequence Deletion , Substrate Specificity , Syndrome
20.
J Biol Chem ; 287(23): 19188-98, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22500020

ABSTRACT

DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions.


Subject(s)
DNA Helicases/chemistry , DNA Repair , DNA Replication , Models, Chemical , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalysis , DNA Helicases/metabolism , DNA, Bacterial/biosynthesis , DNA, Bacterial/chemistry , Escherichia coli/enzymology , Humans , Methanobacterium/enzymology , Organophosphates/chemistry , Organophosphates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL