ABSTRACT
In pear (Pyrus bretschneideri), pollen tube growth is critical for the double fertilization associated with seed setting, which in turn affects fruit yield. The normal deposition of callose mediates the polar growth of pollen tubes. However, the mechanism regulating callose synthesis in pollen tubes remains relatively uncharacterized. In this study, we revealed that the typical pear pollen tube lifecycle has a semi-growth duration (GD50) of 16.16 h under in vitro culture conditions. Moreover, callose plugs were deposited throughout the pollen tube lifecycle. The formation of callose plugs was inhibited by 2-deoxy-D-glucose, which also accelerated the senescence of pear pollen tubes. Additionally, PbrCalS1B.1, which encodes a plasma membrane-localized callose synthase, was expressed specifically in pollen tubes and restored the fertility of the Arabidopsis (Arabidopsis thaliana) cals5 mutant, in which callose synthesis is inhibited. However, this restoration of fertility was impaired by the transient silencing of PbrCalS1B.1, which restricts callose plug formation and shortens the pear pollen tube lifecycle. More specifically, PbrbZIP52 regulated PbrCalS1B.1 transcription by binding to promoter A-box elements to maintain the periodic formation of callose plugs and normal pollen tube growth, ultimately leading to double fertilization. This study confirmed that PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. This finding may be useful for breeding high-yielding pear cultivars and stabilizing fruit setting in commercial orchards.
Subject(s)
Arabidopsis , Pyrus , Pollen Tube , Pyrus/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Longevity , Plant Breeding , Arabidopsis/metabolismABSTRACT
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive myeloid malignancy which characteristically expresses an atypical phenotype including CD123+, CD56+, and CD4+. We are aimed to investigate the clinical and prognostic characteristics of AML patients exhibiting BPDCN-like immunophenotype and provide additional insights for risk stratification of AML. A total of 241 newly diagnosed AML patients were enrolled in this retrospective study and categorized into BPDCN-like positive (n = 125)/negative (n = 116) groups, determined by the present with CD123+ along with either CD56+ or CD4+, or both. Subsequently, an analysis was conducted to examine the general clinical characteristics, genetic profiles, and prognosis of the two respective groups. Patients with BPDCN-like immunophenotype manifested higher frequencies of acute myelomonocytic leukemia and acute monoblastic leukemia. Surprisingly, the presence of the BPDCN-like immunophenotype exhibited an inverse relationship with CEBPA bZIP mutation. Notably, patients with BPDCN-like phenotype had both worse OS and EFS compared to those without BPDCN-like phenotype. In the CN-AML subgroups, the BPDCN-like phenotype was associated with worse EFS. Similarly, a statistically significant disparity was observed in both OS and EFS within the favorable-risk subgroup, while only OS was significant within the adverse-risk subgrouMoreover, patients possessing favorable-risk genetics without BPDCN-like phenotype had the longest survival, whereas those who had both adverse-risk genetics and BPDCN-like phenotype exhibited the worst survival. Our study indicated that BPDCN-like phenotype negatively associated with CEBPA bZIP mutation and revealed a significantly poor prognosis in AML. Moreover, the 2022 ELN classification, in combination with the BPDCN-like phenotype, may better distinguish between different risk groups.
Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Skin Neoplasms , Humans , Retrospective Studies , Interleukin-3 Receptor alpha Subunit , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Prognosis , Acute Disease , Myeloproliferative Disorders/pathology , Skin Neoplasms/pathology , Dendritic Cells/pathology , Mutation , CCAAT-Enhancer-Binding Proteins/geneticsABSTRACT
In this technical note, we report an easy-to-produce, reverse-transcription-free, and protein-enzyme-free lateral flow assay for detection of viral RNA fragments by taking SARS-CoV-2 ORF1ab and N as target models. Catalytic hairpin assembly is utilized for dual RNA fragment orthogonal reaction to generate copious amounts of opened hairpin duplexes, which bridge DNA-modified gold nanoparticles and capture strands on the strip to induce coloration. The dual RNA fragments are simultaneously visualized during one time of sample flow, and single-base-mismatched nontarget sequences can be differentiated. The test strip can be flexibly adapted to detect evolutional SARS-CoV-2 variants such as Delta and Omicron. It also shows potential in visually detecting long-sequence virus simulants and achieves a sensitivity comparable to that of RT-qPCR by incorporation with upstream sample amplification. The lateral flow assay should offer a convenient and reliable technique for viral nucleic acid detection.
ABSTRACT
This study aimed to investigate the distribution and expression of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in yak testes. The testes of healthy yaks at different ages: newborn [3 days], young [1 year], adult [4 years], and old [9 years] were collected for microscopic analyses using hematoxylin and eosin staining, immunohistochemistry and immunofluorescence, as well as western blot to compare the expression of MMP-2 and TIMP-2. Furthermore, the levels of MMP-2mRNA and TIMP-2mRNA was detected by real-time quantitative polymerase chain reaction (qPCR). The results of immunohistochemistry and immunofluorescence demonstrated that MMP-2 and TIMP-2 were mainly located in gonocytes of newborn, Sertoli cells of young, spermatozoa of adult and Leydig cells of old. The protein levels of MMP-2 and TIMP-2 exhibited a downward from newborn to adult, but increased again in old yaks. The analysis of qPCR showed that MMP-2 was higher in young compared with newborn or adult(**p < .01), but a lower expression was detected in adult compared with old yak testicular tissues (*p < .05). Compared with adults, TIMP-2 was significantly higher in newborn and young yaks (**p < .01), and slightly higher in old yaks (*p < .05). Hence, The location of MMP-2 and TIMP-2 in gonocytes were associated with the development of newborn yak testes. The expression of MMP-2 and TIMP-2 in Sertoli cells at young and adult yaks suggested that they provided a clue for the regulation of spermatogenesis. The positive labeling of MMP-2 and TIMP-2 in Leydig cells in old yaks suggested that both may be involved in the interstitial metabolism of the testes during this period. This study revealed the possible role of MMP-2 and TIMP-2 in testicular functionality of yaks at different ages.
Subject(s)
Testis , Tissue Inhibitor of Metalloproteinase-2 , Male , Cattle , Animals , Testis/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/analysis , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 2/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Spermatozoa/metabolismABSTRACT
Yak has strong adaptability to plateau hypoxia environment. However, the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) are important regulators in blood oxygen transportation. Yak testes: newborn (3 days), young (1 years), adult (4 years) and old (9 years) were collected for microscopic analyses using haematoxylin and eosin staining (H&E), immunohistochemistry and immunofluorescence, as well as Western blot to compare the expression of ET-1 and eNOS. Furthermore, the levels of ET-1 mRNA and eNOS mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The results showed that ET-1 mRNA and eNOS mRNA in old yaks were higher than other developmental stages (p < .01). And the levels of ET-1 and eNOS protein increased with age. Immunohistochemistry and immunofluorescence showed that ET-1 and eNOS were mainly localized in gonocytes and spermatogenic membrane of newborn yaks. These two factors were expressed in both Leydig cells of young yaks and endothelial cells of adult yaks. In old yaks, ET-1 was mainly expressed in Sertoli cells, while eNOS was obviously positive in capillaries and Leydig cells. Therefore, the positive results of ET-1 and eNOS in gonocyte and spermatogenic basement were closely related to the development of testes. The expression of Leydig and Sertoli cells indicated that they played an important role in testes function. The expression in endothelial cells or interstitial capillaries, suggesting that they are involved in the regulation of microcirculation in yak testes. This study could provide clues for further revealing the regulation of yak testicular blood vessels in alpine cold and hypoxic environments.
Subject(s)
Endothelin-1 , Testis , Male , Cattle , Animals , Testis/blood supply , Endothelin-1/genetics , Endothelin-1/metabolism , Nitric Oxide Synthase Type III/genetics , Endothelial Cells/metabolism , RNA, Messenger/metabolismABSTRACT
The gray mold fungus Botrytis cinerea produces dark-colored conidia and sclerotia due to deposition of melanin on the cell wall of these structures. However, the role of melanin biosynthesis on development and function of conidia and sclerotia have not been well elucidated in this fungus. This study disrupted the melanin biosynthesis gene Bcscd1 (for scytalone dehydratase) in the wild type B05.10, and the resulting mutants were compared with B05.10 and complementary mutants (COM) for growth and development, virulence and response to biotic/abiotic stresses. Three disruption mutants were obtained, and they did not differ from B05.10 and COM in mycelial growth rate on potato dextrose agar, however, they formed brownish conidia and scleotia deficient in melanogenesis, whereas B05.10 and COM formed grayish conidia and black sclerotia with normal melanogenesis. The disruption mutants were as aggressive as B05.10 and COM in infection of tobacco leaves. TEM observation showed that the disruption mutant ΔScd1-85 formed numerous tiny grooves in the conidial cell wall, thereby causing uneven thickness in the cell wall. In contrast, B05.10 and COM rarely formed tiny grooves in their conidial cell wall with even thickness. Moreover, the sclerotial cortex cell wall of ΔScd1-85 lost rigidity and the cells became collapsed, whereas the sclerotial cortex cell wall of B05.10 and COM appeared rigid, and the cells appeared plump in shape. The disruption mutants were more sensitive than B05.10 and COM in response to chemical stresses (H2O2, NaCl, SDS, sorbitol) for conidial germination and sclerotial survival. The sclerotia of the disruption mutants were more susceptible than the sclerotia of B05.10 and COM to infection by the mycoparasite Trichoderma koningiopsis. These results confirmed previous studies about the effect of melanin production on pathogenicity of B. cinerea, and expanded our knowledge about the role of Bcscd1 in cell wall integrity and in response to biotic and abiotic stresses.
Subject(s)
Ascomycota , Melanins , Botrytis , Hydrogen Peroxide/metabolism , Melanins/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Spores, Fungal/geneticsABSTRACT
OBJECTIVES: To investigate the current status of sleep initiation patterns, influencing factors for sleep initiation patterns, and the influence of sleep initiation patterns on sleep quality in infants and young children. METHODS: A total of 521 infants and young children, aged 0-35 months, who underwent physical examination at the outpatient service of the Department of Growth and Development in Shenzhen Bao'an Women's and Children's Hospital Affiliated to Jinan University were enrolled as subjects. A self-designed questionnaire and Brief Infant Sleep Questionnaire were used to collect the information on family background, parenting behaviors, and sleep quality in the past one week. A multivariate logistic regression analysis was used to evaluate the influencing factors for sleep initiation patterns. A multiple linear regression analysis was used to evaluate the influence of sleep initiation patterns on the number of nighttime awakenings. RESULTS: Among the 521 infants and young children, 258 (49.5%) were breastfed/bottle fed to initiate sleep, 62 (11.9%) were rocked/held to initiate sleep, 39 (7.5%) slept independently, and 162 (31.1%) initiated sleep accompanied by parents. The multivariate logistic regression analysis showed that the children with breastfeeding and a younger age were more likely to be breastfed/bottle fed to initiate sleep (P<0.05) and that the children with a younger age were also more likely to be rocked/held to initiate sleep (P<0.05). The multiple linear regression analysis showed that sleep initiation with breastfeeding/bottle feeding significantly increased the number of nighttime awakenings (P<0.05). CONCLUSIONS: Most infants and young children initiate sleep by being breastfed/bottle fed, rocked/held, or accompanied. The sleep initiation pattern is associated with the age of children and whether they are still breastfeeding. Sleep initiation with breastfeeding/bottle feeding can increase the number of nighttime awakenings. io.
Subject(s)
Breast Feeding , Sleep Quality , Child , Child, Preschool , Cognition , Female , Humans , Infant , Infant, Newborn , Parents , SleepABSTRACT
BACKGROUND: Gene transcripts that show invariant abundance during development are ideal as reference genes (RGs) for accurate gene expression analyses, such as RNA blot analysis and reverse transcription-quantitative real time PCR (RT-qPCR) analyses. In a genome-wide analysis, we selected three "Commonly used" housekeeping genes (HKGs), fifteen "Traditional" HKGs, and nine novel genes as candidate RGs based on 80 publicly available transcriptome libraries that include data for receptacle development in eight strawberry cultivars. RESULTS: The results of the multifaceted assessment consistently revealed that expression of the novel RGs showed greater stability compared with that of the "Commonly used" and "Traditional" HKGs in transcriptome and RT-qPCR analyses. Notably, the majority of stably expressed genes were associated with the ubiquitin proteasome system. Among these, two 26 s proteasome subunits, RPT6A and RPN5A, showed superior expression stability and abundance, and are recommended as the optimal RGs combination for normalization of gene expression during strawberry receptacle development. CONCLUSION: These findings provide additional useful and reliable RGs as resources for the accurate study of gene expression during receptacle development in strawberry cultivars.
Subject(s)
Fragaria , Fragaria/genetics , Gene Expression Profiling , Proteasome Endopeptidase Complex/genetics , Real-Time Polymerase Chain Reaction , Reference Standards , Transcriptome , Ubiquitin/geneticsABSTRACT
Heart failure (HF) is a growing epidemic with high morbidity and mortality at an international scale. The apelin-APJ receptor pathway has been implicated in HF, making it a promising therapeutic target. APJ has been shown to be activated by a novel endogenous peptide ligand known as Elabela (ELA, also called Toddler or Apela), with a critical role in cardiac development and function. Activation of the ELA-APJ receptor axis exerts a wide range of physiological effects, including depressor response, positive inotropic action, diuresis, anti-inflammatory, anti-fibrotic, and anti-remodeling, leading to its cardiovascular protection. The ELA-APJ axis is essential for diverse biological processes and has been shown to regulate fluid homeostasis, myocardial contractility, vasodilation, angiogenesis, cellular differentiation, apoptosis, oxidative stress, cardiorenal fibrosis, and dysfunction. The beneficial effects of the ELA-APJ receptor system are well-established by treating hypertension, myocardial infarction, and HF. Additionally, administration of ELA protects human embryonic stem cells against apoptosis and stress-induced cell death and promotes survival and self-renewal in an APJ-independent manner (X receptor) via the phosphatidylinositol 3-kinase/Akt pathway, which may provide a new therapeutic approach for HF. Thus, targeting the ELA-APJ axis has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of HF. An increased understanding of cardiovascular actions of ELA will help to develop effective interventions. This article gives an overview of the characteristics of the ELA-apelin-APJ axis and summarizes the current knowledge on its cardioprotective roles, potential mechanisms, and prospective application for acute and chronic HF.
Subject(s)
Heart Failure , Hypertension , Peptide Hormones , Apelin , Apelin Receptors , Humans , MyocardiumABSTRACT
CuCo2O4, a type of promising lithium-ion storage material, exhibits high electrochemical properties in lithium-ion batteries and enormous economic benefits. However, its practical application is limited by problems such as structural collapse and electrochemical stability during the charging and discharging process. In this work, the reduced graphene oxide (rGO)-coated CuCo2O4 (CuCo2O4/rGO) hollow microspheres were successfully prepared by electrostatic self-assembly. The CuCo2O4/rGO electrode shows an outstanding capability for lithium-ion storage and a remarkable rate capacity, e.g., 445 mA h g-1 at 5 A g-1. After 150 cycles at 0.1 A g-1, the reversible capacity of the CuCo2O4/rGO electrode is as high as 1080 mA h g-1, and it can still retain about 530 mA h g-1 in the 400th cycle at 1 A g-1. The hollow microspheres with mesoporous shells can cause electrolyte penetration into the spherical shell to effectively shorten the transfer distance of lithium ions, and the encapsulation of graphene improves the conductivity and stability of CuCo2O4, which endows CuCo2O4/rGO with a wonderful Li+ storage performance. It is proved that this is an efficient method to improve the electrochemical performance of metal compounds for better applications in energy storage.
ABSTRACT
In this paper, a carbon nanofiber (CNF) hybrid nanomaterial composed of MnO-Sn cubes embedding in nitrogen-doped CNF (MnO-Sn@CNF) is synthesized through electrospinning and post-thermal reduction processes. It exhibits good electrochemical lithium-ion storage performance as the anode, such as high reversible capacity, outstanding cycle performance (754 mAh g-1at 1 A g-1after 1000 cycles), and good rate capability (447 mAh g-1at 5 A g-1). The excellent electrochemical properties are derived from a unique nanostructure design. MnO-Sn@CNF has a three-dimensional conductive network with a stable core-shell structure, which improves the electrical conductivity and mechanical stability of the materials. In addition, the mesopores on the surface of carbon fibers can shorten the diffusion distance of lithium ions and promote the combination of active sites of the material with lithium ions. The internal MnO and Sn form a heterostructure, which enhances the stability of the physical structure of the electrode material. This material design method provides a reference strategy for the development of high-performance lithium-ion batteries anode.
ABSTRACT
Background: The relationship between hematological cancer susceptibility and methionine synthase MTR A2756G (rs1805087) polymorphism is inconclusive based on data from past studies. Hence, this updated meta-analysis was conducted to investigate the relationship between methionine synthase reductase (MTR) rs1805087 polymorphism and hematological cancers. Method: We searched EMBASE, Google Scholar, Ovid and PubMed databases for possible relevant articles up to December 31, 2019. Results: The overall pooled outcome of our analysis showed lack of association between the risk of hematological malignancies and MTR A2756G polymorphism under the allele model (G vs A: odds ratio = 1.001, 95% CI: 0.944-1.061; p = 0.983), recessive model (GG vs GA + AA: odds ratio = 1.050, 95% CI: 0.942-1.170; p = 0.382). Conclusion: The findings in this study demonstrate a lack of relationship between hematological cancers and MTR A2756G.
Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Genetic Predisposition to Disease , Hematologic Neoplasms/genetics , Polymorphism, Single Nucleotide , Alleles , Case-Control Studies , Genetic Association Studies , Genotype , Hematologic Neoplasms/diagnosis , Humans , Odds Ratio , Publication Bias , Risk Assessment , Risk FactorsABSTRACT
Considering the large-scale production of diversified nanomaterials, it is paramount importance to unravel the structural details of interactions between nanoparticles and biological systems, and thus to explore the potential adverse impacts of nanoparticles. Estrogen receptors (ER) is one of the most important receptor of human reproductive system and the binding of carbon nanotubes to estrogen receptors was the possible trigger leading to the reproductive toxicity of carbon nanotubes. Thus, with single-walled carbon nanotube (SWCNT) treated as model nanomaterials, a combination of in vivo experiments, spectroscopy assay and molecular dynamic modeling was applied to help us unravel some important issues on the binding characterization between SWCNT and the ligand binding domain (LBD) of ER alpha (ERα). The fluorescence assay and molecular dynamics simulations together validated the binding of SWCNT to ERα, suggesting the possible molecular initiating event. As a consequence, SWCNT binding led to a conformational change on tertiary structure levels and hydrophobic interaction was recognized as the driving force governing the binding behavior between SWCNT and LBD of ERα. A in vivo process presented that the exposure of SWCNT increased ERα expression from 26.43â¯pg/ml to 259.01â¯pg/ml, suggesting a potential estrogen interference effects of SWCNT. Our study offers insight on the binding of SWCNT and ERα LBD at atomic level, helpful to accurately evaluate the potential health risks of SWCNT.
Subject(s)
Molecular Dynamics Simulation , Nanotubes, Carbon/chemistry , Receptors, Estrogen/metabolism , Animals , Estradiol/blood , Female , Fluorescence , Molecular Structure , Protein Conformation , Rats , Rats, Sprague-DawleyABSTRACT
It has long been recognized that inhibition of plant water transport by either osmotic stress or salinity is mediated by aquaporins (AQPs), but the function and regulation of AQPs are highly variable among distinct isoforms and across different species. In this study, cucumber seedlings were subjected to polyethylene glycol (PEG) or NaCl stress for duration of 2 h or 24 h. The 2 h treatment with PEG or NaCl had non-significant effect on the expression of plasma membrane AQP (CsPIPs) in roots, indicating the decrease in hydraulic conductivity of roots (Lpr ) and root cells (Lprc ) measured in these conditions were due to changes in AQP activity. After both 2 h and 24 h PEG or NaCl exposure, the decrease in hydraulic conductivity of leaves (Kleaf ) and leaf cells (Lplc ) could be attributed to a down-regulation of the two most highly expressed isoforms, CsPIP1;2 and CsPIP2;4. In roots, both Lpr and Lprc were further reduced after 24 h PEG exposure, but partially recovered after 24 h NaCl treatment, which were consistent with changes in the expression of CsPIP genes. Overall, the results demonstrated differential responses of CsPIPs in mediating water transport of cucumber seedlings, and the regulatory mechanisms differed according to applied stresses, stress durations and specific organs.
Subject(s)
Aquaporins/metabolism , Cucumis sativus/physiology , Gene Expression Regulation, Plant , Plant Transpiration/physiology , Sodium Chloride/pharmacology , Aquaporins/genetics , Biological Transport , Cell Membrane/metabolism , Cucumis sativus/drug effects , Cucumis sativus/genetics , Down-Regulation , Osmotic Pressure , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Salinity , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Stress, Physiological , Water/metabolismABSTRACT
Different types of pathogenic viruses that have common transmission path can be co-infected, inducing distinct disease procession in comparison to that infection of one. Also, in the post COVID-19 time, more types of respiratory infectious virus are becoming prevalent and are concurrent. Those bring an urgent need for detection of co-existing viruses. Here, we propose a visualized lateral flow assay for logic determination of co-existing viral RNA fragments. In the presence of specific viral RNA inputs, DNAzyme is de-blocked according to defined logic, and catalyzes the hydrolysis of hairpin-structural substrate. One of cleaved substrates contains DNAzyme domain to realize dual signal amplification, which obtains copious of the other cleaved substrates. The cleaved substrates act as linking strands for bridging DNA-modified gold nanoparticles onto lateral flow strip to induce coloration on test line. "AND", "OR" and "INHIBIT" controlled lateral flow assays are respectively demonstrated for co-existing viral RNA detection, and the visual results can be obtained by the same kind of prepared strip, without need of re-fabricating strips according to logic systems. The work provides a flexible, convenient, visual and logic-processing strategy for simultaneous analysis of co-existing viruses.
Subject(s)
Biosensing Techniques , DNA, Catalytic , Gold , Metal Nanoparticles , RNA, Viral , SARS-CoV-2 , RNA, Viral/analysis , Biosensing Techniques/methods , DNA, Catalytic/chemistry , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , COVID-19/virologyABSTRACT
This research is designed to examine the genetic diversity and kinship among Hu sheep, as well as to discover genes associated with crucial economic traits. A selection of 50 unrelated adult male Hu sheep underwent genotyping with the SNP50K BeadChip. Seven indicators of genetic diversity were assessed based on high-quality SNP data: effective population size (Ne), polymorphic information content (PIC), polymorphic marker ratio (PN), expected heterozygosity (He), observed heterozygosity (Ho), effective number of alleles, and minor allele frequency (MAF). Plink software was employed to compute the IBS genetic distance matrix and detect runs of homozygosity (ROHs), while the G matrix and principal component analysis were performed using GCTA software. Selective sweep analysis was carried out using ROH, Pi, and Tajima's D methodologies. This study identified a total of 64,734 SNPs, of which 56,522 SNPs remained for downstream analysis after quality control. The population displayed relatively high genetic diversity. The 50 Hu sheep were ultimately grouped into 12 distinct families, with families 6, 8, and 10 having the highest numbers of individuals, each consisting of 6 sheep. Furthermore, a total of 294 ROHs were detected, with the majority having lengths between 1 and 5 Mb, and the inbreeding coefficient FROH was 0.01. In addition, 41, 440, and 994 candidate genes were identified by ROH, Pi, and Tajima's D methods, respectively, with 3 genes overlapping (BMPR1B, KCNIP4, and FAM13A). These results offer valuable insights for future Hu sheep breeding, genetic assessment, and population management.
ABSTRACT
OBJECTIVE: This study investigated the protein oxidation of soybean meal (SBM) stored in a warehouse and the effects of SBM on growth performance, antioxidant status, digestive performance, intestinal morphology, and breast muscle quality of broilers. METHODS: In total, 160 one-day-old Arbor Acres Plus broilers (half male and half female) were randomly divided into two groups with ten replicates of eight birds each: The control group was served with a basal diet including SBM stored at -20°C (FSBM), and the experimental group was served with a basal diet including SBM stored in a warehouse at room temperature for 45 days (RSBM). RESULTS: Compared with FSBM, the protein carbonyl level in RSBM was increased, the free and total thiol levels and in vitro digestibility of protein were decreased. The RSBM decreased the serum glutathione (GSH) level and the hepatic total superoxide dismutase (T-SOD) activity at days 21 and 42 when compared with FSBM. Further, RSBM reduced the duodenal T-SOD activity, jejunal catalase (CAT), and T-SOD activities at day 21, and decreased the duodenal CAT and T-SOD activities, jejunal T-SOD activity, and ileal GSH level and T-SOD activity at days 21 and 42 when compared with FSBM. Besides, the trypsin activity and the ratio of villus height to crypt depth in small intestines of broilers at days 21 and 42 were reduced when fed with a RSBM-contained diet. Compared with FSBM, the 24-h drip loss, shear force, and 24- and 48-h cooking loss of breast muscle were increased of RSBM group, the opposite result was observed for muscle lightness at 48 h. CONCLUSION: Room temperature storage for 45 days led a protein oxidation and decreased in vitro digestibility in SBM, and fed RSBM impaired growth performance, antioxidant status, and meat quality, reduced trypsin activity, and affected the small intestine morphology in broilers.
ABSTRACT
Erythroderma, also known as exfoliative dermatitis, is a rarely reported atypical cutaneous manifestation of adult-onset Still's disease (AOSD). We present the case of erythroderma in association with AOSD that was steroid dependent and responded to tocilizumab therapy. Skin rash, pruritis, and related laboratory findings were significantly improved upon the addition of tocilizumab, while prednisolone was successfully tapered to an ever-lowest maintenance level. To our knowledge, this is the first to report the sole therapeutic effect of tocilizumab in erythroderma related to AOSD.
ABSTRACT
Platelet-derived growth factor B (PDGFB), as an important cellular growth factor, is widely involved in the regulation of cellular events such as cell growth, proliferation, and differentiation. Although important, the expression characteristics and biological functions in the mammalian reproductive system remain poorly understood. In this study, the PDGFB gene of Tibetan sheep was cloned by RT-PCR, and its molecular characteristics were analyzed. Subsequently, the expression of the PDGFB gene in the testes and epididymides (caput, corpus, and cauda) of Tibetan sheep at different developmental stages (3 months, 1 year, and 3 years) was examined by qRT-PCR and immunofluorescence staining. A bioinformatic analysis of the cloned sequences revealed that the CDS region of the Tibetan sheep PDGFB gene is 726 bp in length and encodes 241 amino acids with high homology to other mammals, particularly goats and antelopes. With the increase in age, PDGFB expression showed an overall trend of first decreasing and then increasing in the testis and epididymis tissues of Tibetan sheep, and the PDGFB mRNA expression at 3 months of age was extremely significantly higher than that at 1 and 3 years of age (p < 0.05). The PDGFB protein is mainly distributed in testicular red blood cells and Leydig cells in Tibetan sheep at all stages of development, as well as red blood cells in the blood vessel, principal cells, and the pseudostratified columnar ciliated epithelial cells of each epididymal duct epithelium. In addition, PDGFB protein expression was also detected in the spermatocytes of the 3-month-old group, spermatids of the 1-year-old group, spermatozoa and interstitial cells of the 3-year-old group, and loose connective tissue in the epididymal duct space in each developmental period. The above results suggest that the PDGFB gene, as an evolutionarily conserved gene, may play multiple roles in the development and functional maintenance of testicular cells (such as red blood cells, Leydig cells, and germ cells) and epididymal cells (such as red blood cells, principal cells, and ciliated epithelial cells) during testicular and epididymal development, which lays a foundation for the further exploration of the mechanisms by which the PDGFB gene influences spermatogenesis in Tibetan sheep.