Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Malar J ; 23(1): 38, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308253

ABSTRACT

BACKGROUND: It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines. METHODS: The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency. RESULTS: Based on phenotypic testing, the prevalence of G6PD deficiency (< 30% activity) was 6.13% (25/408) and intermediate deficiency (30-70% activity) was found in 15.20% (62/408) of participants. Several G6PD genotypes with newly discovered double missense variants were identified by HRM assays, including G6PD Gaohe + Viangchan, G6PD Valladolid + Viangchan and G6PD Canton + Viangchan. A significantly high frequency of synonymous (c.1311C>T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals. CONCLUSIONS: With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Malaria , Humans , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Thailand/epidemiology , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/analysis , Malaria/epidemiology , Aminoquinolines/adverse effects
2.
Hemoglobin ; : 1-4, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177110

ABSTRACT

Hemoglobin (Hb) H disease presents a wide range of clinical phenotypes, from asymptomatic to severe forms, depending on significant genetic heterogeneity. This is the first report of clinical and hematological features of the nondeletional HbH disease caused by --CR/αCSα. A baby was born to a father and a mother with --CR and αCSα carriers, respectively. She had severe symptomatic hypochromic microcytic anemia at 2 months of age with Hb 7.8 g/dL, packed cell volume (PCV) 0.27 L/L, mean corpuscular volume (MCV) 64.3 fL, and mean corpuscular Hb (MCH) 18.3 pg. The Hb analysis using capillary electrophoresis (CE) showed Hb Bart's, HbH, and Hb CS peaks at 17.1%, 2.2%, and 1.6%, respectively. A better understanding of a patient's clinical and hematological features with --CR/αCSα is useful for hemoglobinopathy counseling for the national thalassemia controlling program.

3.
Hemoglobin ; 48(1): 47-55, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38369714

ABSTRACT

The study aimed to determine efficacy and safety of generic deferasirox monotherapy. Deferasirox was administered in transfusion-induced iron overloaded thalassemia. Efficacy was defined as responders and nonresponders by ≤ 15 reduced serum ferritin from baseline. Adverse events were also monitored. Fifty-two patients with mainly Hb E/ß-thalassemia at the mean (SD) age of 8.7 (4.1) years, were enrolled. The mean (SD) daily transfusion iron load was 0.47 (0.1) mg/kg and maximum daily deferasirox was 35.0 (6.2) mg/kg. Altogether, 52, 40 and 18 patients completed the first, second and third years of study, respectively. The median baseline serum ferritin 2,383 ng/mL decreased to 1,478, 1,038 and 1,268 ng/mL at the end of first, second and third years, respectively, with overall response rate at 73.1% (38/52). Patients with baseline serum ferritin >2,500 ng/mL showed a change in serum ferritin higher than those ≤2,500 ng/mL starting from the 9th month of chelation. Adverse events were found in 5 of 52 patients (9.6%) including transaminitis (n = 2), one each of proteinuria, rash and proximal tubular dysfunction which resolved after transient stopping or decreasing the chelation dose. Generic deferasirox was effective and safe among pediatric patients with transfusion-induced iron overloaded thalassemia.


Subject(s)
Iron Overload , Thalassemia , Humans , Child , Deferasirox/adverse effects , Iron Chelating Agents/adverse effects , Benzoates/adverse effects , Triazoles/adverse effects , Iron Overload/drug therapy , Iron Overload/etiology , Thalassemia/drug therapy , Iron , Ferritins
SELECTION OF CITATIONS
SEARCH DETAIL