Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Commun Biol ; 7(1): 566, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745065

ABSTRACT

Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.


Subject(s)
Quinolones , Substrate Specificity , Quinolones/chemistry , Quinolones/metabolism , Catalytic Domain , Models, Molecular , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Crystallography, X-Ray , Protein Conformation
2.
Comput Struct Biotechnol J ; 20: 6055-6066, 2022.
Article in English | MEDLINE | ID: mdl-36420148

ABSTRACT

The efforts to signify the relevance of tRNA modifications were always within the limits of prokaryotes, humans, and some fewer model plant systems. The story of tRNA modifications in higher plants is still overlooked, especially in non-model spice crops. Stress causes alterations in tRNA modifications to facilitate the downstream functions of tRNAs. The present study was done to identify and better understand the fate of tRNA nucleoside modifications during biotic stress response in a widely used spice crop called Black pepper. We have uncovered the various tRNA nucleoside modifications present in black pepper. Methylations were the predominant nucleoside modifications in black pepper tRNAs. Furthermore, the different methyltransferase gene candidates implicated in catalyzing tRNA nucleoside methylations in black pepper were also identified. The LC-MS profile showed that certain tRNA nucleoside modifications showed varied abundance upon P. capsici infection. The N4-acetylcytidine (ac4C) nucleoside modification has shown a constant hike at 24 and 48 hpi. At the same time, some nucleoside modifications have exhibited a time-dependent abundance. Altogether our study suggests that tRNA modifications and the expression of associated enzymes are altered during biotic stress regulation.

3.
Genes (Basel) ; 12(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208836

ABSTRACT

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


Subject(s)
Disease Resistance/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phytophthora/physiology , Piper nigrum/genetics , Plant Diseases/genetics , Plant Proteins/metabolism , Disease Resistance/immunology , Genome, Plant , Phylogeny , Piper nigrum/growth & development , Piper nigrum/parasitology , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/parasitology , Plant Proteins/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL