Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
Add more filters

Publication year range
1.
Cell ; 157(4): 785-94, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24813606

ABSTRACT

Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans.


Subject(s)
Biological Evolution , Ursidae/classification , Ursidae/genetics , Adaptation, Physiological , Adipose Tissue/metabolism , Animals , Apolipoproteins B/chemistry , Apolipoproteins B/metabolism , Arctic Regions , Fatty Acids/metabolism , Gene Flow , Genetics, Population , Genome , Ursidae/physiology
2.
Proc Natl Acad Sci U S A ; 121(13): e2318475121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466879

ABSTRACT

Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services.


Subject(s)
Ecosystem , Microbiota , Soil/chemistry , Conservation of Natural Resources , Biodiversity , Forests , Bacteria , Soil Microbiology
3.
Environ Res ; 244: 117839, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38081340

ABSTRACT

Marine top predators such as ringed seals biomagnify environmental contaminants; and with the increasing human activities in the Arctic, ringed seals are exposed to biologically significant concentrations of trace elements resulting in reproductive impairment, immunosuppression, and neurological damages. Little is known about the molecular effects of heavy metals on these vulnerable apex predators suffering from a rapidly changing Arctic with significant loss of sea-ice. In the present study, concentrations of cadmium (Cd), mercury (Hg) and selenium (Se) were measured in liver of sixteen Greenlandic ringed seals (nine adults and seven subadults) together with molecular biomarkers involved in bio-transformation, oxidative stress, endocrine disruption and immune activity in blood and blubber. The concentrations of trace elements increased in the following order: Hg > Se > Cd with levels of mercury and selenium being highest in adults. Aryl hydrocarbon receptor nuclear translocator (ARNT), peroxisome proliferator activated receptor alpha (PPARα, estrogen receptor alpha (ESR1), thyroid hormone receptor alpha (TRα) and interleukin - 2 (IL-2) mRNA transcript levels were highest in blubber, while heat shock protein 70 (HSP70) and interleukin - 10 (IL-10) were significantly higher in blood. There were no significant correlations between the concentrations of trace elements and mRNA transcript levels suggesting that stressors other than the trace elements investigated are responsible for the changes in gene expression levels. Since Hg seems to increase in Greenlandic ringed seals, there is a need to re-enforce health monitoring of this ringed seal population.


Subject(s)
Mercury , Seals, Earless , Selenium , Trace Elements , Water Pollutants, Chemical , Animals , Humans , Trace Elements/metabolism , Cadmium/toxicity , Cadmium/analysis , Selenium/metabolism , Water Pollutants, Chemical/analysis , Seals, Earless/genetics , Seals, Earless/metabolism , Mercury/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression , Interleukins/genetics , Interleukins/metabolism
4.
Environ Res ; 250: 118441, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38350544

ABSTRACT

This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.


Subject(s)
Brain-Gut Axis , Environmental Exposure , Gastrointestinal Microbiome , Pesticides , Humans , Gastrointestinal Microbiome/drug effects , Environmental Exposure/adverse effects , Pesticides/toxicity , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Exposome , Environmental Pollutants/toxicity , Brain/drug effects , Brain/metabolism , Animals
5.
Environ Res ; 241: 117474, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37879390

ABSTRACT

Here, we collected 154 plant species in China ancient forests looking for novel efficient bioactive compounds for cancer treatments. We found 600 bioactive phyto-chemicals that induce apoptosis of liver cancer cell in vitro. First, we screen the plant extract's in vitro cytotoxicity inhibition of cancer cell growth using in vitro HepG2 cell lines and MTT cytotoxicity. The results from these initial MTT in vitro cytotoxicity tests show that the most efficient plants towards hepatoma cytoxicity is Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus). We then used in cell-counting kit-8 (CCK-8) to further understand in vivo tumor growth using nude mice and GC-MS and LC-QTOF-MS to analyze the composition of compounds in the extracts. Extracted chemically active molecules analyzed by network pharmacology showed inhibition on the growth of liver cancer cells by acting on multiple gene targets, which is different from the currently used traditional drugs acting on only one target of liver cancer cells. Extracts from Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus) induce apoptosis in hepatoma cancer cell line HepG2 with a killing rate of more than 83% and a tumor size decrease by 62-67% and a killing rate of only 6% of normal hepatocyte LO2. This study highlight efficient candidate species for cancer treatment providing a basis for future development of novel plant-based drugs to help meeting several of the UN SDGs and planetary health.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Mice, Nude , Liver Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis
6.
Mol Ecol ; 32(8): 1925-1942, 2023 04.
Article in English | MEDLINE | ID: mdl-36680370

ABSTRACT

Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.


Subject(s)
Eagles , Environmental Pollutants , Animals , Humans , Eagles/genetics , Europe , Norway , Genomics , Genetic Variation/genetics
7.
J Anim Ecol ; 92(6): 1216-1229, 2023 06.
Article in English | MEDLINE | ID: mdl-37055915

ABSTRACT

Quantifying the diet composition of apex marine predators such as killer whales (Orcinus orca) is critical to assessing their food web impacts. Yet, with few exceptions, the feeding ecology of these apex predators remains poorly understood. Here, we use our newly validated quantitative fatty acid signature analysis (QFASA) approach on nearly 200 killer whales and over 900 potential prey to model their diets across the 5000 km span of the North Atlantic. Diet estimates show that killer whales mainly consume other whales in the western North Atlantic (Canadian Arctic, Eastern Canada), seals in the mid-North Atlantic (Greenland), and fish in the eastern North Atlantic (Iceland, Faroe Islands, Norway). Nonetheless, diet estimates also varied widely among individuals within most regions. This level of inter-individual feeding variation should be considered for future ecological studies focusing on killer whales in the North Atlantic and other oceans. These estimates reveal remarkable population- and individual-level variation in the trophic ecology of these killer whales, which can help to assess how their predation impacts community and ecosystem dynamics in changing North Atlantic marine ecosystems. This new approach provides researchers with an invaluable tool to study the feeding ecology of oceanic top predators.


Connaître en détails la composition du régime alimentaire des grands prédateurs marins tels que les orques (Orcinus orca) est primordial afin d'évaluer leurs impacts sur les écosystèmes. Pourtant, à quelques exceptions près, l'écologie alimentaire de ces super-prédateurs reste mal comprise. Ici, nous utilisons notre nouvelle approche d'analyse quantitative des signatures d'acides gras (QFASA) sur près de 200 orques et plus de 900 proies potentielles pour modéliser leur régime alimentaire à travers l'Atlantique Nord. Les estimations de leurs régimes alimentaires montrent que les orques consomment principalement d'autres baleines dans l'ouest de l'Atlantique Nord (Arctique canadien, Est du Canada), des phoques dans le milieu de l'Atlantique Nord (Groenland) et des poissons dans l'est de l'Atlantique Nord (Islande, îles Féroé, Norvège). Néanmoins, ces estimations varient considérablement d'un individu à l'autre dans la plupart des régions. Cette variation alimentaire importante entre les individus doit être prise en compte dans les futures études écologiques qui s'intéressent aux orques de l'Atlantique Nord et d'ailleurs. Ces estimations révèlent des variations remarquables dans l'écologie trophique des orques tant au niveau des population que de l'individu, ce qui peut aider à évaluer l'impact de leur prédation sur la dynamique des communautés et des écosystèmes dans un contexte de changements climatiques en l'Atlantique Nord. Cette nouvelle approche fournit aux chercheurs un outil inestimable pour étudier l'écologie alimentaire des super-prédateurs océaniques.


Subject(s)
Seals, Earless , Whale, Killer , Animals , Ecosystem , Fatty Acids , Canada , Diet/veterinary
8.
Environ Sci Technol ; 57(42): 16109-16120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37818957

ABSTRACT

Lipophilic persistent organic pollutants (POPs) tend to biomagnify in food chains, resulting in higher concentrations in species such as killer whales (Orcinus orca) feeding on marine mammals compared to those consuming fish. Advancements in dietary studies include the use of quantitative fatty acid signature analysis (QFASA) and differentiation of feeding habits within and between populations of North Atlantic (NA) killer whales. This comprehensive study assessed the concentrations of legacy and emerging POPs in 162 killer whales from across the NA. We report significantly higher mean levels of polychlorinated biphenyls (PCBs), organochlorine pesticides, and flame retardants in Western NA killer whales compared to those of Eastern NA conspecifics. Mean ∑PCBs ranged from ∼100 mg/kg lipid weight (lw) in the Western NA (Canadian Arctic, Eastern Canada) to ∼50 mg/kg lw in the mid-NA (Greenland, Iceland) to ∼10 mg/kg lw in the Eastern NA (Norway, Faroe Islands). The observed variations in contaminant levels were strongly correlated with diet composition across locations (inferred from QFASA), emphasizing that diet and not environmental variation in contaminant concentrations among locations is crucial in assessing contaminant-associated health risks in killer whales. These findings highlight the urgency for implementing enhanced measures to safely dispose of POP-contaminated waste, prevent further environmental contamination, and mitigate the release of newer and potentially harmful contaminants.


Subject(s)
Caniformia , Polychlorinated Biphenyls , Whale, Killer , Animals , Environmental Monitoring , Canada , Polychlorinated Biphenyls/analysis , Diet
9.
Environ Res ; 229: 115915, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37076030

ABSTRACT

Pharmaceutical compounds are among the environmental contaminants that cause pollution of water resources and thereby threaten ecosystem services and the environmental health of the past decades. Antibiotics are categorized as emerging pollutants due to their persistence in the environment that are difficult to remove by conventional wastewater treatment. Ceftriaxone is one of the multiple antibiotics whose removal from wastewater has not been fully investigated. In this study, TiO2/MgO (5% MgO) the efficiency of photocatalyst nanoparticles in removing ceftriaxone was analyzed by XRD, FTIR, UV-Vis, BET, EDS, and FESEM. The results were compared with UVC, TiO2/UVC, and H2O2/UVC photolysis processes to evaluate the effectiveness of the selected methods. Based on these results, the highest removal efficiency of ceftriaxone from synthetic wastewater was 93.7% at the concentration of 400 mg/L using TiO2/MgO nano photocatalyst with an HRT of 120 min. This study confirmed that TiO2/MgO photocatalyst nanoparticles efficiently removed ceftriaxone from wastewater. Future studies should focus on the optimization of reactor conditions and improvements of the reactor design to obtain higher removal of ceftriaxone from wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Ultraviolet Rays , Magnesium Oxide , Ceftriaxone , Hydrogen Peroxide , Ecosystem , Titanium , Anti-Bacterial Agents , Catalysis
10.
Environ Res ; 224: 115543, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36822540

ABSTRACT

Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil/chemistry , Soil Pollutants/metabolism , Biodegradation, Environmental , Soil Microbiology , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Acclimatization
11.
Environ Res ; 231(Pt 1): 116043, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37156351

ABSTRACT

Wildlife is exposed to mixtures of environmental contaminants that affect health and population dynamics. Exposure to toxic heavy metals originating from anthropogenic sources may exert metabolic effects at even low exposure concentrations. Here we investigated the relationships between heavy metal exposure and metabolic changes in the migratory bird pink-footed goose (Anser brachyrhynchus). We used blood pellet and blood plasma samples from 27 free-ranging pink-footed geese to study heavy metal (Cd, Cr, Hg, and Pb) exposure in relation to the metabolome. The results relate blood concentrations of Cd (range: 0.218-1.09 ng/g), Cr (range: 0.299-5.60 ng/g), and Hg (range: 2.63-6.00 ng/g) to signal areas of fatty acids and other lipids, while no correlations were identified for Pb level (range: 21.0-64.2 ng/g) exposure. Lipid signal areas were negatively associated with concentrations of Cr and positively associated with Hg exposure (both p < 0.05). α-Linolenic acid and 9-oxononanoic acid were negatively correlated to Cr exposure (both p < 0.05) and were related in the α-linolenic acid metabolism pathway. Compared to known thresholds for aviary species, the heavy metal concentrations are below levels of toxicity, which may explain the low number of metabolites that significantly change. Nevertheless, the heavy metal exposure is still correlated to changes in the lipid metabolism that may reduce migrating birds' breeding success and increase mortality for an exposed part of the population.


Subject(s)
Mercury , Metals, Heavy , Animals , Geese , Cadmium , Lipid Metabolism , Lead/toxicity , alpha-Linolenic Acid , Metals, Heavy/toxicity , Metabolome
12.
Environ Res ; 218: 114967, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455630

ABSTRACT

We analyzed the problematic textile fiber waste as potential precursor material to produce multilayer cotton fiber biocomposite. The properties of the products were better than the current dry bearing type particleboards and ordinary dry medium-density fiberboard in terms of the static bending strength (67.86 MPa), internal bonding strength (1.52 MPa) and water expansion rate (9.57%). The three-layer, four-layer and five-layer waste cotton fiber composite (WCFC) were tried in the experiment, the mechanical properties of the three-layer WCFC are insufficient, the five-layer WCFC is too thick and the four-layer WCFC had the best comprehensive performance. The cross-section morphology of the four-layer WCFC shows a dense structure with a high number of adhesives attached to the fiber. The hardness and stiffness of the four-layer cotton fiber composite enhanced by the high crystallinity of cellulose content, and several chemical bondings were presence in the composites. Minimum mass loss (30%) and thermal weight loss rate (0.70%/°C) was found for the four-layer WCFC. Overall, our findings suggested that the use of waste cotton fiber (WCF) to prepare biocomposite with desirable physical and chemical properties is feasible, and which can potentially be used as building material, furniture and automotive applications.


Subject(s)
Cotton Fiber , Textiles , Cellulose/chemistry
13.
J Environ Manage ; 344: 118718, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37541001

ABSTRACT

Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.


Subject(s)
Wastewater , Water Pollutants, Chemical , Anti-Bacterial Agents , Levofloxacin/analysis , Hydrogen Peroxide , Water Pollutants, Chemical/chemistry , Boron/chemistry , Diamond/chemistry , Oxidation-Reduction , Electrodes
14.
Planta ; 256(5): 97, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36219256

ABSTRACT

MAIN CONCLUSION: Drought may be efficiently managed using the following strategies: prevention, mitigation, readiness, recovery, and transformation. Biotechnological interventions may become highly important in reducing plants' drought stress in order to address key plant challenges such as population growth and climate change. Drought is a multidimensional construct with several triggering mechanisms or contributing factors working at various spatiotemporal scales, making it one of the known natural catastrophes. Drought is among the causes of hunger and malnutrition, decreasing agricultural output, and poor nutrition. Many deaths caused in children are due to hunger situations, and one in four children face stunted growth. All this hunger and malnutrition may be responsible for the reduction in agricultural productivity caused due to the drought situations affecting food security. Global Hunger Index has been accelerating due to under-nutrition and under-5 deaths. Drought has been covering more than 20% of the world's agricultural areas, leading to significantly less food production than what is required for consumption. Drought reduces soil fertility and adversely affects soil biological activity reducing the inherent capacity of the soil to support vegetation. Recent droughts have had a much greater effect on people's lives, even beyond causing poverty and hunger. Drought may have substantial financial consequences across the globe it may cause a severe impact on the world economy. It is a natural feature of the environment that will appear and disappear as it has in history. Due to increasing temperatures and growing vulnerabilities, it will undoubtedly occur more often and seriously in the coming years. To ensure sustainable socio-economic and social development, it is critical to reducing the effects of potential droughts worldwide using different biotechnological interventions. It's part of a long-term growth plan, and forecasting is essential for early warnings and global hunger management.


Subject(s)
Hunger , Malnutrition , Droughts , Food Supply , Malnutrition/epidemiology , Malnutrition/prevention & control , Soil
15.
Environ Sci Technol ; 56(16): 11440-11448, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35921287

ABSTRACT

We investigated trophic dynamics of Hg in the polluted Baltic Archipelago Sea using established trophic magnification (TMFs) and biomagnification factors (BMFs) on a comprehensive set of bird, fish, and invertebrate species. As different ecological and ecophysiological species traits may affect trophic dynamics, we explored the effect of food chain (benthic, pelagic, benthopelagic) and thermoregulatory strategy on trophic total Hg (THg) dynamics, using different approaches to accommodate benthopelagic species and normalize for trophic position (TP). We observed TMFs and most BMFs greater than 1, indicating overall THg biomagnification. We found significantly higher pelagic TMFs (3.58-4.02) compared to benthic ones (2.11-2.34) when the homeotherm bird species were excluded from models, but not when included. This difference between the benthic and pelagic TMFs remained regardless of how the TP of benthopelagic species was modeled, or whether TMFs were normalized for TP or not. TP-corrected BMFs showed a larger range (0.44-508) compared to BMFs representing predator-prey concentration ratios (0.05-82.2). Overall, the present study shows the importance of including and evaluating the effect of ecological and ecophysiological traits when investigating trophic contaminant dynamics.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Birds , Environmental Monitoring , Fishes , Food Chain , Mercury/analysis , Water Pollutants, Chemical/analysis
17.
Environ Res ; 215(Pt 1): 114218, 2022 12.
Article in English | MEDLINE | ID: mdl-36049514

ABSTRACT

The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.


Subject(s)
Anti-Infective Agents , COVID-19 , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Ecosystem , Humans , Pandemics/prevention & control
18.
Environ Res ; 214(Pt 1): 113751, 2022 11.
Article in English | MEDLINE | ID: mdl-35753369

ABSTRACT

The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.2 million tonnes. Case studies on life cycle assessment (LCA) of pesticides showed that toxicity is the major severe impact of pesticide usage, contributing to human toxicity (∼70%) and freshwater eco-toxicity (>50%). This alarming situation needs a solution as conventional pesticides pose various negative impacts to human and the environment, rendering the biofuel production process unsustainable. In this review, we focus on the interaction between pesticide use, biofuel production, food security for a sustainable balancing in between government benefits, environmental, and human health, aiming to track the implications and impact to the global efforts towards achieving the UN Sustainable Development Goals (SDGs). Even though, there are strict government regulations and legislations pertaining to pesticide use, and policies devised as guidelines for agroforestry sectors to implement and monitor these measures, the discrepancies still exist in between national and supranational entities. To cater the above issue, many efforts have been made to upscale the biofuel production, for example, the United States, Brazil, China and Indonesia have ventured into biofuels production from non-food-crops based feedstock while other developing nations are rapidly catching up. In this perspective, a sustainable nexus between Biofuels-Pesticides-Agroforestry (BPA) is essential to create a sustainable roadmap toward the UN SDGs, to fulfilling the energy, food, and land security. The contribution of technologies in BPA includes genetic modified crops, integrated pest and weed management with controlled release pesticides, use of nano-biopesticides is being reviewed. As a whole, the concept of biofuel processing complex (BPC) and farmers upskilling, together with the effective implementation of efficient policies and Internet of Things (IoT) would be the key to drive the BPA nexus towards fulfilment of SDGs.


Subject(s)
Pesticides , Sustainable Development , Biofuels , Energy-Generating Resources , Humans , United Nations
19.
Environ Res ; 208: 112742, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35065927

ABSTRACT

The increasing exploratory efforts in the Greenland mineral industry, and in particular, the proposed rare earth element (REE) mining projects, requires an urgent need to generate data on baseline REE concentrations and their potential environmental impacts. Herein, we have investigated REE concentrations in anadromous Arctic char (Salvelinus alpinus) and shorthorn sculpins (Myoxocephalus scorpius) from uncontaminated sites in Northwest Greenland, along with the relationships between the element concentrations in gills and liver, and gill histology and serum biochemical parameters. Concentrations of arsenic, silver, cadmium, cerium, chromium, copper, dysprosium, mercury, lanthanum, neodymium, lead, selenium, yttrium, and zinc in gills, liver and muscle are presented. No significant statistical correlations were observed between element concentrations in different organs and gill histology or serum biochemical parameters. However, we observed positive relationships between age and histopathology, emphasizing the importance of including age as a co-variable in histological studies of fish. Despite no element-induced effects were observed, this study is considered an important baseline study, which can be used as a reference for the assessment of impacts of potential future REE mine sites in Greenland.


Subject(s)
Environmental Monitoring , Perciformes , Animals , Greenland , Mining , Trout
20.
Chem Eng J ; 441: 135936, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35345777

ABSTRACT

The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.

SELECTION OF CITATIONS
SEARCH DETAIL